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EXECUTIVE SUMMARY 
This study mainly sought to facilitate a better understanding of the factors that have driven transit 
ridership’s spatio-temporal variations during the COVID-19 pandemic and to predict transit ridership 
on the Chicago Transit Authority’s (CTA’s) rail system in order to help inform the Regional 
Transportation Authority (RTA) and CTA’s decision-making. Given the limited scope of work and time 
constraints, the research team did not have the resources to analyze ridership on the other transit 
modes in northeastern Illinois. However, the research team sought to develop a larger ridership 
prediction model to better understand COVID-19’s impacts on transit ridership in northeastern 
Illinois. In a future analysis, they may examine ridership on other public transit modes, consisting of 
CTA bus, Metra rail, and Pace bus services.  

The research team conducted a historic review of the qualitative and quantitative research findings 
from disruptive events of transit systems in the past 30 years, focusing on public reactions, ridership 
recovery periods, and transit agency responses during and after those events. These events were 
limited to those that potentially caused travel avoidance due to fear-based responses from the 
public. They consisted of the London and Madrid bombings, the Tokyo sarin gas attacks, and the 9/11 
attacks as well as past epidemics such as Severe Acute Respiratory Syndrome (SARS), H1N1 swine flu, 
Middle East Respiratory Syndrome (MERS), and Ebola. This literature review provided insights into 
COVID-19’s impacts on transit in northeastern Illinois. 

The research team also developed a modeling framework that integrated a Bayesian structural time-
series model, a dynamics model for daily transit ridership loss, a prediction module, and an ordinary 
least squares regression to gain further insights specifically into COVID-19’s impacts on CTA’s rail 
ridership.  

Most of the terrorist attacks in the past produced an immediate response from the public. For smaller 
scale attacks such as those in Madrid and London, the effects lasted less than four months, while the 
9/11 attacks had prolonged effects lasting for one to two years. However, the Tokyo case, given its 
magnitude and cultural context, did not produce any fear-based response from the public.  

The epidemics considered in this study varied in magnitude from localized outbreaks (e.g., Ebola) to a 
worldwide pandemic (e.g., H1N1). All epidemics resulted in noticeable ridership reductions on public 
transit systems during the outbreak. This is possibly due to passengers’ travel avoidance behavior, 
reduced commercial activities, and executive orders. Nonetheless, the ridership reductions from all 
epidemics were short term once the outbreaks ended. However, it should be noted that none of the 
recent epidemics or pandemics and their accompanying executive orders have lasted as long as the 
current COVID-19 pandemic and its accompanying executive orders. The Taipei Metro and South 
Korea Metro showed a fast recovery within weeks of their respective outbreaks ending. Sierra Leone 
had an immediate recovery in ridership after their three-day national lockdown orders, and the 
Toronto Transit Commission (TTC) experienced a ridership reduction only during the year of the SARS 
outbreak. Furthermore, the Hong Kong Metro Transit Railway, Taipei Metro, TTC, and Singapore Mass 
Rapid Transit showed steady, annual ridership increases (particularly on the rail lines) in the years 
following the end of their epidemics. Annual ridership may have even exceeded pre-epidemic levels. 
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Based on the findings from the collected literature and datasets, the research team found that (i) the 
critical factors behind ridership reductions included executive orders (school closures), service 
decisions, travel fears, risk perceptions stemming from media reports, and depression of tourist 
demand, as well as differences in responses to the epidemic or pandemic from different 
sociodemographic groups; (ii) most past events did not induce long-term fear and prolonged ridership 
losses, except for the 9/11 attacks; and (iii) transit agencies usually had successfully mitigated the 
impacts of epidemics or pandemics by escalating safety measures, adjusting services for different 
routes, and launching advertisements and promotions campaigns. 

The research team used the knowledge gained from the literature review to inform their statistical 
analysis on ridership of the CTA’s rail system. They predicted counterfactual ridership on the CTA’s 
rail system using the Bayesian structural time series to quantify ridership reductions from the COVID-
19 pandemic, having considered historical ridership trends, seasonality, and holidays for each of the 
CTA’s rail stations. They then developed a dynamics model for ridership losses which captured the 
impacts of people’s subjective risk perceptions to daily confirmed COVID-19 deaths as well as media 
attention that they quantified using Google Trends scores. The dynamics model also captured transit 
users’ reactions to executive orders, school closures, and remote working policies. This model’s 
prediction module served to forecast future media attention as well as the pandemic’s evolution. It 
forecasted the Google Trends scores and daily reported deaths into the upcoming months to predict 
transit ridership. Once the dynamics model was fitted to each CTA rail station, the research team 
performed an ordinary least squares regression in the model parameters to try to explain the 
heterogeneity of parameters as a function of the socioeconomic and land-use characteristics of city 
neighborhoods near each CTA rail station.   

Overall, the regression results show that socioeconomic and land-use characteristics were good 
predictors, with an 𝑅𝑅2 of 0.743, of the percentage reduction of ridership given the remote 
learning/working executive orders in the beginning of the pandemic. However, they also showed that 
socioeconomic characteristics were not good predictors of peoples’ travel behavior during the 
pandemic, having 𝑅𝑅2 values for the regression of all other parameters under 0.281. These model 
parameters were intended to capture the public’s response given the news coverage and daily 
reported deaths. They may indicate that the primary drivers of transit ridership reduction and 
possibly recovery are policy and executive orders.  

Acknowledging the fact that the statistical analysis did not consider the ridership reduction given the 
“new normal” and increased work-at-home opportunities, the evidence from previous epidemics 
have shown that fear-based ridership reduction recovers within months. Therefore, once all 
executive orders and restrictions are lifted and schools fully reopen, CTA rail ridership in Chicago 
could follow the same recovery trends as those epidemics presented in this project.  
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CHAPTER 1: INTRODUCTION 
The COVID-19 pandemic has had far-reaching impacts on public health, the economy, and ways of 
living. It adds to a long list of historic events that have thoroughly altered travel behavior and globally 
disrupted transportation systems (Van Cranenburgh et al., 2012; Muley et al., 2020). COVID-19 has 
drastically changed the demand for almost all urban transportation modes, including not only public 
transit, but also personal vehicles and bike-sharing systems (Teixeira & Lopes, 2020; Parr et al., 2020; 
Lee et al., 2020; Padmanabhan et al., 2021). Many factors such as mandatory quarantine orders, 
social distancing requirements, and people’s fear and anxiety of being in enclosed spaces may have 
contributed to this phenomenon. 

Transit ridership in major US cities sharply decreased after the World Health Organization (WHO) 
declared the COVID-19 outbreak a pandemic in March 2020. New York City, Seattle, Nashville, and 
Chattanooga, for example, experienced a ridership reduction of 90%, 79%, 66.9%, and 65.1%, 
respectively, within the pandemic’s first few months (Gao et al., 2020; Wilbur et al., 2020). Besides 
ridership decreases, studies have consistently shown that there are socioeconomic disparities in how 
the pandemic has affected different social groups. Results show that lower-income people, less-
educated people, and minority groups experienced the least behavioral changes (Bliss et al., 2020; 
Brough et al., 2020; De Vos, 2020; Garza, 2020; Sy et al., 2020; Transit, 2020; Wilbur et al., 2020; Hu & 
Chen, 2021; Tirachini & Cats, 2020; Liu et al., 2020; McLaren, 2020; Fissinger, 2020). These population 
groups usually have had jobs that are involved in society’s “essential” functions, and therefore had to 
continue working in person through the pandemic (Kantamneni, 2020). People who earned less 
money were also less likely to own a car and therefore depended on public transit (Klein & Smart, 
2017). 

The trends and patterns of the Chicago Transit Authority (CTA) are similar to the general trend in the 
United States when examining its daily rail ridership. Figure 1 presents CTA daily rail ridership from  
1 March 2020 to 1 March 2021, along with daily reported deaths within the same period. The same 
trend can be observed on other modes such as on CTA buses and ridesharing services in Chicago, 
using data from their respective agencies (Hu & Chen, 2021; Fissinger, 2020; Tyler, 2021). 

Figure 1 shows that CTA rail ridership suffered a sharp drop on 16 March 2020 (i.e., the start of 
quarantine orders), falling to approximately 20% of pre-COVID-19 ridership levels. After that, it had 
seemed to slowly bounce back until July, when it stabilized until the end of October at approximately 
30% of the CTA rail system’s pre-COVID-19 ridership numbers. In November, CTA rail ridership started 
declining again when it aligned with the rise on reported deaths, and finally appears to be slowly 
building back up.  

Many other major cities, such as Seattle, New York City, Los Angeles, San Francisco, and Dallas, have 
also observed a very similar pattern on their transit systems as the one presented in Figure 1 (Apple, 
2020). This pattern seems to be consistent even in cities and states that had “reopened” (New York 
Times, 2020), suggesting that quarantine orders may not be the only factor that has influenced transit 
ridership. Instead, as evidenced in past epidemics, the level of public fear has been shown to 
discourage passengers who use public transportation (Wang, 2014; Sung, 2016). 
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Figure 1. Graph. Total CTA rail ridership compared to daily reported deaths in  

Chicago from 1 March 2020 to 1 March 2021. 

Amid the COVID-19 pandemic whose long-term impacts are yet to be observed, much can be learned 
from the effects of previous prolonged events on transit systems. The study team therefore collected 
quantitative and qualitative research findings from previous prolonged events to observe the time 
span and magnitude of their impacts on transit ridership as well as patterns of travel demand 
recovery. Among the numerous instances of prolonged events (e.g., epidemics, terrorist attacks, and 
natural disasters) in recent history that substantially altered human mobility behavior (Van 
Cranenburgh et al., 2012), this study focused on prolonged events that may have caused fear-based 
responses from the population and discouraged potential riders from using a particular 
transportation mode. The study team therefore focused on terrorist attacks and past epidemics. In 
light of the noteworthy differences of the historical context around these prolonged events (e.g., 
regulations, culture, and technological options), the review section focuses on events in the last three 
decades to help ensure the findings’ compatibility with those of the COVID-19 pandemic. The 
research team also collected and summarized the responses of those transit agencies that the 
previous pandemics impacted. This information provides a reference for the Illinois Department of 
Transportation, the Regional Transportation Authority (RTA) and its service boards, and other transit 
agencies within Illinois. It can help them better react to and recover from the current pandemic. The 
knowledge obtained through this literature review has also served as a cornerstone for supporting 
the first step of a potential comprehensive statistical analysis that can further provide a deeper 
understanding of the COVID-19 pandemic’s potential long-term effects. 

The research team used information from the literature review to design a statistical model to predict 
transit ridership on CTA’s rail system in order to help inform the RTA and CTA’s decision-making. 
Given the limited scope of work and time constraints, the research team did not have the resources 
to analyze ridership on the other transit modes in northeastern Illinois. However, the research team 
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seeks to develop a larger ridership prediction model to better understand COVID-19’s impacts on 
transit ridership in northeastern Illinois. In a future analysis, they may examine ridership on other 
public transit modes, consisting of CTA bus, Metra rail, and Pace bus services. 

This study’s transit ridership model on the CTA’s rail system integrated a Bayesian structural time 
series (BSTS) to estimate counterfactual ridership and to quantify ridership reductions (Hu & Chen, 
2020; Scott & Varian, 2015), a dynamics model for daily transit ridership reductions that Wang (2014) 
inspired, a forecast model for the pandemic evolution used for forecasting (Altieri et al., 2020), and 
an ordinary least squares (OLS) regression analysis to draw insights between socioeconomic 
characteristics and ridership reductions observed during the pandemic.  

This report is organized as follows. Chapter 2 focuses on the literature review, including effects of 
past terrorist attacks on travel ridership across all transportation modes, past epidemics and 
pandemics, recent COVID-19 studies with a focus on any of the Chicago transit or bike-sharing 
systems, and transit agency responses to previous and current epidemic events. Chapter 3 presents 
the statistical modeling framework that the research team developed for this study and presents 
results of the CTA rail ridership analysis. Detailed results are summarized in the appendix. Chapter 4 
provides concluding remarks. 
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CHAPTER 2: LITERATURE REVIEW 

TERRORIST ATTACKS 
Like epidemics, terrorist attacks on transportation systems induce fear on transportation users and 
may change their travel behavior. Epidemics and terrorist attacks on transportation systems can 
cause “abrupt substantial changes” in the transportation system (Van Cranenburgh et al., 2012). The 
literature has documented and quantified the severity and duration of these changes, as manifested 
in aggregated travel pattern variations (Gigerenzer, 2004, 2006; Gaissmaier & Gigerenzer, 2012; 
López-Rousseau, 2005; Prager et al., 2011; Von Winterfelt & Prager, 2010). These attacks include the 
9/11 terrorist attacks in New York City in 2001, the London bombings in 2005, the Madrid bombings 
in 2003, and the Tokyo sarin gas attack in 1995. 

The 9/11 terrorist attacks in New York City caused almost 3,000 deaths and direct financial losses of 
approximately 36 billion dollars in property damage, earning losses, and restoration costs (Bram et 
al., 2002). This event caused a well-recorded immediate reduction of air travel in the United States of 
over 30% in September 2001 as compared to the same period of the previous year (Ito & Lee, 2005; 
Blunk et al., 2006). Nonetheless, researchers have found mixed evidence on whether this attack 
caused a prolonged mode shift away from flying in the United States or a general travel reduction 
(Gigerenzer, 2004, 2006; Sivak & Flannagan, 2004; Gaissmaier & Gigerenzer, 2012; Lai & Lu, 2005). 
Blunk et al. (2006) studied the change in revenue passenger miles from 1989 to 2002 and concluded 
that travel demand by December 2002 had not gone back to the predicted counterfactual levels (i.e., 
if no attack had occurred). Revenue passenger miles in December 2002 were 11.6% less than the 
predicted counterfactual values. They attributed this prolonged impact to passengers’ reluctance to 
travel because increased screening time and mandatory earlier arrivals at airports after 9/11 
increased air travel’s opportunity cost (Blunk et al., 2006). Ito and Lee (2005) also studied domestic 
revenue passenger miles from 1986 to 2003. They concluded that, by the end of 2003, there was an 
ongoing demand reduction of 7.4% that their cyclical, seasonal, or other explanatory variables could 
not explain. This shows that the 9/11 attack had a prolonged impact. 

Gordon et al. (2007) studied 9/11’s impacts on the economy and air traffic, by analyzing passenger 
numbers in international and domestic flights from 1999 to 2003. This study found an approximately 
8% reduction in the first year of the 9/11 attacks and a 4% reduction in the second year. Figure 2 
presents the forecasts of domestic and international flight travelers by the Holt-Winters forecasting 
approach along with actual observed numbers. This plot shows a long-term decrease in demand. 
Although some other studies, e.g., Lai and Lu (2005) and Cunado et al. (2008), claimed no evidence of 
long-term consequences from the 9/11 attacks, these conclusions were based on univariate time-
series techniques that had limitations according to King (2010). 
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Figure 2. Graph. Forecasts of monthly domestic and international air passengers. 

Source: Gordon et al. (2007) 

Gigerenzer (2004, 2006) proposed the “dread hypothesis” in his studies about the impacts of the 
9/11 terrorist attacks. This hypothesis stated that American residents avoided air travel after the 
attacks, then switched to a riskier alternative transportation mode, which resulted in more 
transportation-related fatalities. Gigerenzer (2006) found evidence for this hypothesis based on the 
observation of a decrease in air travel followed by an increase in vehicle miles traveled in 2001, and 
then a corresponding increase in fatal crashes in 2002. The trend of fatality crashes is depicted in 
Figure 3, suggesting that people’s prolonged fear had lasted one year after the attacks. Although this 
literature review does not seek to evaluate traffic fatalities, evidence of the switch in modes and 
duration of the change in travel behavior can provide insights on travelers’ fear associated with a 
particular mode. 

 
Figure 3. Graph. The number of fatal traffic accidents in the United States increased after the 
terrorist attacks on 11 September 2001 for a period of 12 months. Numbers are expressed as 

deviations from the five-year baseline 1996–2000 (the zero line). 

Source: Gigerenzer (2006) 
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Although researchers disagreed on exactly which type of road trips replaced air travel (Sivak & 
Flannagan, 2004), consistent evidence shows that roadway travel increased across the United States 
(Blalock et al., 2005). This increase did not occur uniformly across the United States but instead 
correlated with driving opportunity and vehicle ownership in neighborhoods (Gaissmaier & 
Gigerenzer, 2012). 

Researchers have also tested the dread hypothesis for other terrorist attacks such as the sarin gas 
attack in Tokyo (20 March 1995), the Madrid Bombings (11 March 2004), and the London bombings 
(7 July 2005) (Von Winterfelt & Prager, 2010). Although these events were smaller in magnitude than 
the 9/11 attacks, Madrid and London each showed evidence of short-term travel behavior changes 
(López-Rousseau, 2005; Prager et al., 2011). The Madrid attacks targeted interurban short-distance 
trains, so other modes such as buses and urban metro lines were not directly affected. López-
Rousseau (2005) showed that ridership declined 4% to 6% for two months following the Madrid 
attacks. However, this study did not find evidence of a mode shift to driving or an increase in vehicle 
fatalities; see Figure 4, which compares the percentage variations of train travelers, highway vehicles, 
and highway fatal accidents before and after the Madrid attacks. 

 
Figure 4. Graph. Average interannual variation in the number of train travelers, highway vehicles, and 
fatal highway accidents in March and April from 1999 to 2003 versus March and April 2004 in Spain. 

Source: López-Rousseau (2005) 

Baumert (2010) expanded upon López-Rousseau (2005) by considering the change in travel behavior 
in buses and metro trains based on daily ridership data. Surprisingly, the number of passengers riding 
buses only fluctuated for a couple of days. Figure 5 shows the time-series plot of bus ridership. It 
shows an 8% drop on the day of the attack followed by an increase of approximately 20% the next 
day mainly due to a massive demonstration of Madrid’s citizens responding to the attack. The 
ridership fluctuations of metro lines were similar to that of the bus lines, as shown in Figure 6.  



7 

 
Figure 5. Graph. Daily number of passengers using the  

Madrid bus from 1 September 2002 to 30 September 2004. 

Source: Baumert (2010) 

 
Figure 6. Graph. Number of daily passengers in the Madrid Metro from 2002 to 2007. 

Source: Baumert (2010) 



8 

Fasolo et al. (2008) studied the London bombing attacks under the dread hypothesis and found that 
London transit users reduced their train travel in response to the attacks. The use of bikes, 
motorcycles, and mopeds had increased, indicating modal shift. However, no evidence showed any 
corresponding increase in fatalities across these modes. This evidence agrees with Prager et al. 
(2011), who used several multivariate time-series models to study the London bombing attacks. This 
study showed an approximately 8% decline in train travel over the four months following the attacks. 
Figure 7 presents the results of this study’s time-series forecasting. 

 
Figure 7. Graph. London Underground passenger journeys, all lines,  

observed and prediction 95% confidence intervals from 2003 to 2006. 

Source: Prager et al. (2011) 

Finally, researchers found no evidence of travel behavioral change after the Tokyo sarin gas attack 
(Fynnwin & Barbara, 2010). Figure 8 shows the time-series data of the Tokyo subway system’s daily 
boardings for passengers with and without season tickets. The lack of change might be due to 
Japanese culture and lack of high-capacity transportation alternatives in Tokyo, as most residents rely 
on public transit for travel.  
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Figure 8. Graph. Time series of monthly passenger volumes from 1992 to 1998. 

Source: Fynnwin & Barbara (2010) 

In an attempt to understand factors that may influence the dread hypothesis’s validity, Von 
Winterfelt and Prager (2010) summarized results across all the aforementioned terrorist attacks. This 
study attributed their differences to variations in the primary attack’s characteristics, the attacked 
transportation system’s characteristics, and social amplification. They found that changing risk-
perception after the attacks can significantly influence transit user choices, so policy decisions after 
an attack should be carefully designed to avoid inducing unnecessary alarms or false comfort. They 
also found that any supply side service reductions can significantly influence ridership, as evidenced 
in Prager et al. (2011). This study shows, for example, that decisions such as station closures and 
cancelled dispatches accounted for approximately 18% of the ridership loss after the London 
bombing attacks. 

Recognizing the importance of risk perception as a predictor for drops in transit ridership, researchers 
have studied prolonged risk perception after terrorist attacks (Von Winterfelt & Prager, 2010). These 
studies concluded that fear is not uniform across transit riders. Rubin et al. (2007) surveyed 
Londoners 11 to 13 days after the bombing attacks and followed up with another survey 7 to 8 
months after the bombing attacks. They found that 11% of the respondents still experienced 
“substantial stress” after eight months and that 19% of all participants reported having traveled less 
during that time because of the attacks (Rubin et al., 2007). They also found that participants from 
poorer households were most likely to experience persistent substantial stress. 

Milioti et al. (2019) surveyed transit users and focused on their reaction to a hypothetical terrorist 
attack in Athens, Greece. This study found that approximately 16% of respondents would refrain from 
using the metro system for more than six months if an attack were to occur in the Athens metro 
system. Out of this group, most were women and people who had access to a personal vehicle as a 
replacement travel mode. 
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In summary, policymakers and planners can learn from substantial changes in travel behavior, 
recovery periods, and transit user risk perception after terrorist attacks. The aforementioned 
evidence from London, Madrid, and Tokyo shows that people may change their travel behavior for 
only a short period (i.e., 1 to 4 months). Evidence from 9/11, however, shows that people may shift 
travel modes for up to 12 months after the attack. 

Service supply factors can also significantly affect recovery after the attacks (e.g., the 9/11 and 
London attacks). Although this information cannot directly provide any prediction on how transit 
systems may recover from COVID-19, one may conclude that reduced service during a pandemic may 
further contribute to ridership drops. Permanent changes such as an increase of working at home 
opportunities (Barrero et al., 2020) may also produce prolonged ridership decreases just as changes 
in air travel did after 2001. 

To draw more direct insights from past events that could inform future decisions, the next section will 
explore previous epidemics that may have caused considerable changes in transit ridership. These 
events share more similar characteristics with the current COVID-19 pandemic, which can give us a 
better idea about people’s prolonged risk perception and travel behavioral changes. 

PAST EPIDEMICS 
Many epidemics throughout history severely affected people’s lives and placed a huge societal 
burden at the regional, national, or even global level. These epidemics, in turn, have greatly 
challenged public transit systems. Numerous studies in the literature look into how epidemics 
quantitatively and/or qualitatively impacted public transit. In this section, the research team will 
summarize some of the literature on epidemics/pandemics that occurred in recent decades, including 
severe acute respiratory syndrome (SARS), H1N1 swine flu, Middle East respiratory syndrome (MERS), 
and Ebola (Pitlik, 2020; Muley et al., 2020). They will also show how these epidemics/pandemics 
quantitatively and qualitatively impacted public transit. 

The research team will emphasize the reported information for each epidemic/pandemic event, 
including confirmed cases and deaths, event duration, executive orders, ridership reductions, 
ridership recovery, and transit agency revenue (subject to data availability), to provide valuable 
insights into the scale and duration of ridership reductions for different public transit modes. They 
will also emphasize the relevant literature on passenger behavioral changes and risk perceptions 
during epidemics to explore the mechanisms behind ridership fluctuations. 

SARS 
SARS was first reported in Asia in November 2002, and the World Health Organization (WHO) 
declared its containment on 5 July 2003. The SARS outbreak affected 29 countries and territories, 
with 8,096 confirmed cases and 774 deaths worldwide (World Health Organization, 2015b). Canada, 
Mainland China, Hong Kong, Singapore, and Taiwan were among the most severely impacted 
countries/regions. 
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In February 2003, Hong Kong reported the index patient of the SARS outbreak. On 23 June 2003, the 
WHO removed Hong Kong from the list of infected areas. During the SARS outbreak, there were a 
total of 1,755 confirmed cases and 299 deaths in Hong Kong. 

At the peak of the SARS pandemic, the Hong Kong Mass Transit Railway observed a 25% ridership 
decline (Hong Kong Mass Transit Railway, 2004). After the SARS outbreak was contained, however, its 
ridership bounced back quickly in the year’s second half. The Tseung Kwan O line that opened in 
August 2002 played a critical role in the recovery process. Overall, its 2003 annual ridership was 1% 
lower than that of 2002. Ridership on the express line to the Hong Kong Airport plummeted 19% 
given significantly lower passenger volume at the airport.  

Likewise, Kowloon Motor Bus Company Limited, Long Win Bus Company Limited, and Sun Bus 
Holdings Limited witnessed sharp drops in annual ridership (The Kowloon Motor Bus Holdings 
Limited, 2004). The Kowloon Motor Bus Company’s ridership for each of the four quarters of 2003 
dropped 3.9%, 15.5%, 4.6%, and 2.0% compared to its respective quarterly ridership in 2002, showing 
a quick recovery process. The Long Win Bus Company’s annual ridership dropped approximately 
5.1%, mainly due to reduced tourism. Sun Bus Holdings Limited observed a particular drop in student 
patronage during the SARS outbreak.  

After the SARS pandemic, the Hong Kong Mass Transit Railway’s ridership consistently rebounded, 
while bus ridership fluctuated at the same time. Figure 9-A shows that Hong Kong Mass Transit 
Railway’s annual ridership increased 8.3% in 2004 and 5.8% in 2005, which exceeded pre-SARS 
ridership (Hong Kong Mass Transit Railway, 2005, 2006). However, as shown in Figure 9-B, bus 
ridership recovered only 0.3% from 2003 to 2004 and then decreased 5.1% in 2005 (The Kowloon 
Motor Bus Holdings Limited, 2005, 2006). Intensified competition with the expanding metro rail 
network likely slowed, or even impeded, its bus ridership’s post-pandemic recovery. 

  
Metro ridership (Hong Kong Mass  

Transit Railway, 2005, 2006). 
Bus ridership (Kowloon Motor Bus  

Holdings Limited, 2006). 

Figure 9. Graphs. Hong Kong metro and bus ridership from 2001 to 2005. 

Taiwan identified its first SARS case on 5 February 2003 and had 346 confirmed cases and 3,032 
suspected cases reported by the end of 5 July 2003. The Taiwanese authorities did not issue any stay-
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at-home orders for the general population but did require home quarantine for those who had close 
contact with suspected patients or who traveled from affected countries/territories (Hsieh et al., 
2005). By focusing on the fluctuation of Taipei Metro’s ridership during this time, Wang (2014) 
observed that the peak of ridership loss was approximately 50% of the pre-pandemic level. It took 
approximately four months after the end of the outbreak for Taipei Metro’s ridership to recover to its 
normal level.  

More specifically, Wang (2014) modeled ridership reduction from the perspective of “public fear.” 
Wang distinguished the reasons behind the ridership reduction into (i) “fresh fear,” which accounts 
for immediate ridership loss after each reported SARS case; and (ii) “residual fear,” which represents 
the lasting but decaying impacts of each confirmed case on ridership after the reporting date. This 
study found that “fresh fear” diverted approximately 1,200 passengers away from transit. This fear 
would remain in people’s minds for approximately 28 days as “residual fear.” 

Researchers also collected the yearly ridership of Taipei Metro from 2001 to 2005 (Metro Taipei, 
2021), as plotted in Figure 10. It shows that despite the significant drop in 2003, ridership steadily 
increased from 2004 to 2005, showing no long-term effects (i.e., more than a month) from the SARS 
outbreak. 

 
Figure 10. Graph. Yearly ridership of Taipei metro from 2001 to 2005.  

Source: Metro Taipei (2021) 

SARS also severely affected Toronto, Canada, with 361 reported cases from 23 February 2003 to  
7 June 2003. Systemwide transit passenger trip data from the Toronto Transit Commission’s annual 
reports show that Toronto’s public transit system lost approximately 10 million riders in 2003. This 
can be partially attributed to the following compounding factors: the SARS outbreak, which 



13 

accounted for approximately 3.5 million missing riders; North America’s Northeastern Seaboard 
power outage, which led to a loss of 2.5 million trips; and increased fares for all modes (Toronto 
Transit Commission, 2005b). Ridership recovered in 2004 and continued to increase in 2005, as 
shown in Figure 11. 

 
Figure 11. Graph. Yearly ridership of Toronto Transit Commission from 2001 to 2005. 

Source: Toronto Transit Commission (2005b) 

Singapore identified the first confirmed SARS case on 1 March 2003. To contain the spread of the 
virus, Singapore shut down schools on 27 March 2003, and then successively reopened its junior 
colleges, secondary schools, and primary schools before mid-April (Singapore Government Press 
Release, 2003). The WHO removed Singapore from the infected area list on 31 May 2003. Singapore 
had 238 total confirmed cases and 33 deaths (World Health Organization, 2015b).  

During April and May of 2003, Singapore Mass Rapid Transit (SMRT) observed drastic ridership drops. 
Its bus service lost 4.6% of its ridership and its peak rail ridership dropped almost 9.5% when 
compared to pre-SARS values (SMRT Corporation Ltd., 2004). When the pandemic was contained by 
the end of May 2003, rail ridership started to gradually recover and continued to increase in the 
following years. Bus ridership kept declining until mid-2004, however. It began to rise in 2005 but 
declined again in 2006. Please see Figure 12. 

In 2003, SARS, an increase in goods and services taxes, and reduced average fares caused a 4.8% loss 
in annual rail service revenue for SMRT. Despite reduced ridership during the SARS outbreak on its 
bus service, however, increased bus fares and SMRT’s efforts to prevent fare dodgers stabilized 
annual revenue on its bus system during this time. Its advertising revenue also remained roughly the 
same as in previous years, since better economic conditions in 2003’s second half offset the first 
half’s weak performance.  
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Figure 12. Graph. Yearly ridership of SMRT rail and SMRT bus from FY2002 to FY2006. 

Source: SMRT Corporation Ltd. (2006) 

On a global scale, Sadique et al. (2007) analyzed the population’s perception of SARS-related risks. 
They collected and analyzed survey data from respondents from (i) Denmark, Great Britain, the 
Netherlands, Poland, and Spain, which SARS did not directly affect; and (ii) Guangdong Province 
(China), Hong Kong, and Singapore, which SARS directly affected. This study found that over 54% of 
the respondents considered public transportation as the riskiest place, ranging from 43% of 
Singaporean respondents to 63% of Spanish respondents. Most respondents also avoided taking 
public transit as a precautionary action, ranging from 65% of Singaporean respondents to 85% of 
British respondents. It suggests that fear perception regarding epidemics may be similar across 
cultures, which may explain why public transit systems worldwide are struggling to regain ridership 
even when no clear evidence exists to corroborate the connections between transit usage and the 
higher risk of COVID-19 exposure (Maxine, 2020; Solomonow, 2020; Schwartz, 2020). 

H1N1 
The H1N1 swine flu was first identified on 15 April 2009; the pandemic lasted approximately 14 
months, until 11 August 2010 (Centers for Disease Control and Prevention, 2019). There were 
491,382 lab-confirmed cases (World Health Organization, 2010b) and at least 18,449 deaths (World 
Health Organization, 2010a). 

Fenichel et al. (2013) investigated air passengers’ voluntary defensive behaviors during the H1N1 
pandemic in the United States. They used air passenger records from US Airways to show the number 
of missed flight reservations during the H1N1 pandemic. They also used Google Trends data (i.e., 
internet search frequency) on “swine flu” and “H1N1” to show public perceptions of H1N1-related 
risks, and reported H1N1 cases from the WHO’s FluNet database to represent the H1N1 pandemic’s 
actual risks. These metrics are shown in Figure 13. 
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Figure 13. Graph. Percentage of flight reservations missed (grey bar), two-week moving average of 
reported H1N1 cases (blue line), and two-week moving average of Google Trends (“Swine Flu” in 

black dotted line, “H1N1” in red dashed line) during H1N1 pandemic in the United States.  

Source: Fenichel et al. (2013) 

The results indicated that 0.34% of missed flights can be attributed to passengers’ defensive actions, 
and that people were more sensitive to epidemic-related media coverage than objective risk 
measurements, such as the number of reported cases. These results emphasize the importance for 
agencies or authorities to convey clear information to the public. Proper information sharing and 
transparency help people avoid irrational behaviors induced by their fear of catching the virus, and in 
turn, help societies avoid excessive costs during pandemics. 

In March 2016, Hotle et al. (2020) collected surveys from 2,168 respondents in the United States to 
analyze people’s perception of influenza risks under the following three scenarios: risk perception 
when not infected, risk mitigation when infected, and risk mitigation when not infected. They 
analyzed the data using an ordered logit model and found a clear disparity between males and 
females regarding behavior change during epidemics. For the risk perception, females had a stronger 
sense of risk for trips to school, the workplace, and hospitals, while males tended to keep their same 
travel habits. Moreover, this study identified the information source that informed respondents 
about the influenza’s spread as another significant factor to affect risk perception. If people found 
out about the influenza outbreak by word of mouth, their risk perception about mandatory trips and 
medical trips increased. However, if people heard about the influenza outbreak through television, 
their risk perception increased more for discretionary trips than for medical and mandatory trips. 

Regarding risk mitigation, males were less likely to avoid public places, including public transit, as a 
measure to prevent the spread of virus once infected. The study also found that respondents with 
higher family incomes were less likely to stay home or take social distancing actions. Similarly, they 
found that respondents with higher family income and higher education (i.e., at least a bachelor’s 
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degree) were less likely to stay home to reduce exposure. However, it is important to note that this 
study was carried out before the COVID-19 pandemic and that observed patterns may have changed 
with increased opportunities for working remotely.  

MERS 
The first MERS case occurred in Jordan in April 2012. Up to March 2020, cases have been reported in 
27 countries in the Middle East, Africa, and Asia, leading to 885 known deaths due to infection and 
related complications (World Health Organization, 2020). 

South Korea suffered the largest MERS outbreak outside of the Middle East. The first case was 
reported in May 2015, and over the course of the following two months, 136 cases and 38 deaths 
were reported (Oh et al., 2018). South Korea never issued national quarantine orders but used 
quarantine as a strategy to mitigate the virus spread among those who were exposed. Korea had 
nearly 17,000 quarantined individuals (Oh et al., 2018). 

Sung (2016) studied how the MERS outbreak affected rail transit ridership in Seoul Metropolitan City. 
They implemented a combination of ARIMAX models to produce counterfactual series and compared 
them to observed ridership during the outbreak. Figure 14, which plots daily rail ridership from May 
20 to the end of the year (i.e., indexed as day 0 to 250) for 2013, 2014, and 2015, respectively, shows 
ridership drops during the MERS outbreak. This study found that ridership did not considerably drop 
until the number of infections increased. The magnitude and frequency of notable ridership drops 
also depended on trip purpose. More consistent morning commute trips were affected much later 
and in lesser magnitudes, while evening hour trips (often for leisure) were immediately affected and 
in greater magnitudes. Nonetheless, the data showed that the reduction in trips for morning and 
evening rush hours was temporary. Ridership recovered to pre-epidemic levels after August, when 
the virus spread was mostly contained. 

 
Figure 14. Graph. Daily rail transit ridership by year (day 0 = May 20). 

Source: Sung (2016) 
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Kim et al. (2017) studied MERS’ effects on transit ridership in Seoul Metropolitan City across 
population groups, regions, and modes. This study specifically proposed the concept of “life fixity” to 
understand the differences in travel behavior among demographic groups and geographical areas. 
Although they did not formally define the concept, they explained that life fixity is the opposite of the 
“degree of freedom to change the details of daily life activities.” They hypothesized that this social 
activity–based metric should be highly correlated with social status and income level. They used land 
price as a proxy for life fixity and studied the change in travel behavior spatially as a function of land 
prices. A higher land value was found to be associated with a higher reduction in trip frequency, 
which can be seen in Figure 15. Nonetheless, the model for peak-hour travel alone showed that those 
traveling during peak hours were less sensitive to the epidemics and exhibited less behavioral change. 
This observation supports their hypothesis that peak hour travelers (likely lower-level workers) are 
more likely to have a higher life fixity (i.e., lower freedom to change their daily activities). 

 
Figure 15. Map. Land price contour and rate of change in  

transit get-on frequency during peak hours. 

Source: Kim et al. (2017) 

Ebola 
The Ebola virus was first discovered in 1976, but its biggest outbreak occurred from 2014 to 2016 in 
Sierra Leone, Liberia, and Guinea (World Health Organization, 2021). This outbreak took over 11,000 
lives. In Sierra Leon, the WHO officially declared the end of that Ebola outbreak on 7 November 2015 
(World Health Organization, 2015a). 
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The Sierra Leone government had two national lockdowns to fight the Ebola virus, one in September 
2014 and one in March 2015 (Peak et al., 2018). They also launched Operation Northern Push from 
June to September 2015, which focused on instituting curfews, increasing surveillance, and contact 
tracing. 

Peak et al. (2018) studied the effects of the second lockdown from 27 March 2015 to 29 March 2015. 
To capture the change in people’s mobility, they analyzed mobile phone call detail records from a 
leading operator in the country between 20 March 2015 and 1 July 2015. They compiled the 
sequence of phone towers visited in the study period to quantify the number of trips. With this 
information, they applied a time-series intervention analysis to evaluate changes in the number of 
trips among chiefdoms. Their results showed that the change in travel was not uniform across all trip 
lengths; e.g., the numbers of trips with distances shorter than 15 km, in between 15–30 km, and 
longer than 30 km were reduced 31%, 46%, and 76%, respectively. They also found no immediate 
increase in trip numbers after the lockdowns ended, which shows that people did not 
overcompensate for their missed travels after the lockdown orders were lifted. Figure 16-A presents 
the daily time series of trips among all chiefdoms, while Figure 16-B shows the statistically significant 
anomalies in the time series. Using the generalized extreme studentized deviate many-outliers 
procedure (Rosner, 1983), the latter figure identified the number of outlying trips from 95% 
confidence intervals and showed that the lockdown did not significantly affect travel demand after 
March 29.  

Peak et al. (2018) also found that the reduction in travel demand was up to two times larger in 
regions that had experienced a higher number of Ebola cases, showing that the lockdown’s effect was 
spatially heterogeneous. Operation Northern Push lasted until September 2015, so this study only 
captured this Operation’s beginning stage. Even so, they were able to quantify a 6.1% decrease in 
trips into the targeted chiefdoms, and a 4.5% decrease in trips out of the targeted chiefdoms. This 
general trend is captured by the downward trend during the operation, as shown in Figure 16-A. 

The 2014 Ebola outbreak mainly affected African countries, but for a period, the confirmation of a 
few cases in the United States triggered growing concerns about a potential outbreak in the United 
States. Cahyanto et al. (2016) studied the public perception of Ebola in the United States, specifically 
focusing on the relationship between perceived risk and observed domestic air travel avoidance. 
Although there was only a negligible risk of contracting Ebola on commercial flights, the public was 
not widely aware of this scientific fact. This study developed a health belief model, which focused on 
quantifying sociodemographics and respondents’ perceived travel risk, perceived susceptibility, 
perceived severity, self-efficacy, and subjective knowledge. They surveyed 1,613 representative US 
residents. This study showed that most respondents considered Ebola a serious health threat. 
However, most of them demonstrated no (or a minimal) plan to avoid travel. This study identified the 
strongest predictor of travel avoidance to be the perceived Ebola-related risks; the higher the 
perceived risk level, the greater the travel avoidance. This study also found no significant relationship 
between the respondents’ perceived severity of a health crisis condition and travel avoidance. 
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Figure 16. Graph. (A) Daily number of trips between Freetown and Magbema, the largest chiefdom 

in the northern district of Kambia. (B) Daily number of positive (grey) and negative (black) travel 
anomalies detected between all chiefdom pairs with an average of at least 10 trips per day. 

Source: Peak et al. (2018) 

COVID-19 
Researchers have recently conducted numerous studies attempting to understand changes in travel 
behavior in the United States during the current COVID-19 pandemic. Some of their results have 
increased the knowledge about ongoing travel behavior changes in Chicago. 

Hu and Chen (2021) studied ridership decline on the CTA’s rail system in Chicago until 30 April 2020. 
They analyzed this ridership reduction through a framework that combined (i) a Bayesian structural 
time-series (BSTS) model to produce the counterfactual ridership numbers to quantify the ridership 
decline, and (ii) a partial least square regression model to evaluate the significant sociodemographic 
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variables that may explain this decline. Figure 17 shows predicted ridership from the BSTS model and 
an estimation of epidemic-related ridership reduction (as a percentage). Each green line represents 
the number of entries at a rail station, and the black line represents the mean. In the partial least 
square regression, the independent variables include demographic (at the census block group level), 
economic, and land-use characteristics, as well as cumulative COVID-19 cases and deaths. The 
proportion of people with college (or higher) degrees, median household income, and proportion of 
white people in a neighborhood were the main characteristics found to negatively affect transit 
ridership during the pandemic. In contrast, the proportion of black people in a neighborhood had the 
largest positive effect on ridership. These results are consistent with other studies around the United 
States (Brough et al., 2020; Sy et al., 2020; Wilbur et al., 2020; Liu et al., 2020), which found evidence 
of disparities in travel behavior during the COVID-19 pandemic. 

 
Figure 17. Graph. Station level impact during the COVID-19 pandemic until 30 April 2021. 

Source: Hu & Chen (2021) 

Padmanabhan et al. (2021) looked at how COVID-19 affected the bike-sharing system in New York 
City, Boston, and Chicago from 19 October 2019 to 1 June 2020. They used daily trip data from bike-
sharing systems along with the time series of reported COVID-19 cases to draw relationships between 
them. They applied correlation analysis and a random-effect least square regression model that 
explicitly accounted for unobserved heterogeneity. For the three cities, they found that the highest 
number of COVID-19 cases and the lowest number of bike-sharing trips were recorded in the month 
of April. They also found that the number of bike-sharing trips started to rebound after the number of 
daily cases had peaked. However, it was still only about 54% of the recorded value in the first month 
of the study period. Figure 18 shows these trends in the time-series data. The average trip duration 
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was positively correlated with the COVID-19 cases for all three cities. Per this study, this phenomenon 
may not be due to people riding longer distances, but instead people riding shorter trips less 
frequently under the impact of COVID-19. 

 
Figure 18. Graph. COVID-19 cases and bike-sharing trips by week in Chicago. 

Source: Padmanabhan et al. (2021) 

Fissinger (2020) studied travel behavior among Chicago travelers before and during the COVID-19 
pandemic. The existing literature mainly used aggregated ridership numbers by time of day or by 
transit routes or stops. However, this study used daily account-based data from the Ventra fare 
payment system to study the trips each individual made as a basic unit of analysis. This study used a 
k-mean clustering algorithm in both space and time dimensions to classify riders into particular 
behavior groups, such as those based on trip length and time of travel. Consistent with other studies, 
Fissinger (2020) found ridership change to be highly heterogeneous among two identified groups of 
riders: “high range frequent peak rail riders” and “high range frequent off-peak bus riders.” The riders 
in the former group, primarily located on Chicago’s north side, were composed of higher income 
individuals and were mostly Caucasian. This group of trips declined 80%. In contrast, the latter group 
of trips only decreased 33%. This study also performed a spatial regression analysis to determine the 
predictors of ridership loss among census tracts. It showed that the proportion of users holding 
transit passes were associated with higher ridership during the COVID-19 pandemic, most likely due 
to these users’ transit dependence. This study also found that the rate of transfers and percent of 
trips taken on buses were strong predictors of large ridership. This observation agrees with Boisjoly et 
al. (2018), who suggested that investing in bus services can particularly help mitigate the drop in 
ridership in North American cities. Much like other aforementioned studies on transit in the United 
States, this study found a significant racial disparity, showing that the proportions of black and 
Spanish-speaking residents are strong predictors of small ridership drops. 

AGENCY RESPONSE 
To help public transit agencies plan for and respond to epidemic events, the Transportation Research 
Board and National Academies of Sciences, Engineering, and Medicine (2014) issued a guidebook 
(referred to as the “Guidebook”), which outlined important aspects, such as pandemic preparedness, 
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partnerships with other agencies or authorities, safety measurements, operating adjustments during 
pandemics, workforce management, and risk management. Agency experiences from historical 
events (Hong Kong Mass Transit Railway, 2004; SMRT Corporation Ltd., 2004) have supported these 
suggestions and guidelines, and the agencies’ reactions toward the current pandemic (Schwartz, 
2020; Toronto Transit Commission, 2021; SMRT Corporation Ltd., 2021) have applied and further 
enriched these guidelines. Guidelines from this Guidebook are highlighted below and are connected 
to field measures that have successfully helped agencies recover from the impacts of this epidemic’s 
events. This information is intended to serve as reference for this pandemic’s ongoing and incoming 
challenges and those of similar future events. 

SAFETY MEASURES 
The safety measures mentioned in the Guidebook include the following: coordinating with the health 
department to keep up with the latest health advice and medical supports for employees, educating 
staff about the proper way to disinfect facilities and vehicles, setting up plastic shields to isolate 
drivers from passengers, distributing personal protective equipment, requiring social distancing, as 
well as emphasizing ventilation and cleanness of vehicles and facilities. These efforts help reduce 
riders’ perception of safety risks associated with using transit services. 

During the SARS outbreak, the Hong Kong Mass Transit Railway and Singapore Mass Rapid Transit 
took multiple efforts that were similar to the aforementioned measures, such as distributing facial 
masks; offering staff vitamin C tablets; enhancing cleaning, disinfection, and ventilation of vehicles 
and transit facilities; and mandating routine temperature checks for their employees (Hong Kong 
Mass Transit Railway, 2004; SMRT Corporation Ltd., 2004). Additional practices have gradually 
become widely adopted among transit agencies worldwide during the COVID-19 pandemic. These 
practices include placing hand sanitizer dispensers in vehicles and within stations, equipping vehicles 
with hospital-grade filters and fresh air dampers, as well as using UV tubes to sterilize HVAC units 
(Schwartz, 2020). 

A common social distancing strategy during the COVID-19 pandemic, as Schwartz (2020) summarized, 
is limiting vehicle occupancy and skipping stops after reaching reduced capacity to allow sufficient 
rider separation on board. New Jersey Transit, Portland TriMet, and Vancouver TransLink have 
adopted this strategy. They have dynamically adjusted the capacity limit based on this pandemic’s 
evolution (e.g., infection rate) and other factors (e.g., executive orders). Transit operators can enforce 
a no-standing policy or set a maximum number of on-board passengers to reduce rider capacity on 
buses. These policies rely on the bus drivers’ judgment on vehicle occupancy. However, after a 
vehicle reaches capacity, the “skipping stop” operation is difficult to implement, because bus drivers 
must balance capacity restrictions with the needs of on-board passengers to alight. 

Many public transit bus operators also instituted a rear-door boarding policy (exceptions may have 
applied to riders with disabilities) with suspended fare collection to ensure sufficient space between 
riders and the driver. Once transparent plastic shields were placed around drivers (e.g., on Dallas 
Area Rapid Transit and Florida’s Palm Tran), the rear-door boarding policy was gradually rescinded 
and front-door boarding operations were restored. 
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SERVICE ADJUSTMENT 
Transit agencies may reasonably adjust service to save operating costs when facing great challenges 
amid epidemics. The Guidebook suggests that transit agencies categorize their services into essential 
and nonessential services during epidemics. Essential services should include transit agencies’ critical 
functions, such as guaranteed service for passengers who lack access to alternative transportation 
modes and required or customized services for healthcare workers and patients. Transit agencies in 
urban areas could then reduce their nonessential services, such as commuting routes, which will 
likely have drastically reduced demand. Government executive orders (e.g., stay-at-home orders), 
fear of catching the virus on public transit, reduced commercial activities, and reduced commuting 
needs (e.g., due to remote work and online schooling) are major reasons behind these ridership 
losses. Transit operators in rural areas may extend headways on fixed routes or switch to demand-
responsive services in response to new travel demand patterns. 

These guidelines have been implemented and further expanded with details during the COVID-19 
pandemic, as summarized in Schwartz (2020). Right after the COVID-19 outbreak, many transit 
agencies reduced their service levels and only maintained essential services for those passengers 
relying on public transit. As the situation ameliorated after June 2020, ridership slightly bounced 
back, and these agencies have accordingly adjusted their services. Many agencies, including New 
York’s Metropolitan Transportation Authority, Philadelphia’s Southeastern Pennsylvania 
Transportation Authority, and New Jersey Transit, have gradually restored their services to their pre-
COVID-19 service levels. Although New York’s Metropolitan Transportation Authority stopped its 
subway service after midnight for thorough cleaning and disinfection of its vehicles and stations, it 
operated supplementary bus services to continue providing overnight service coverage. Houston 
METRO reduced its headways, with more frequent vehicle dispatches, to ensure social distancing on 
board when demand had bounced back. Other strategies, including deploying standby buses around 
routes with downgraded services, adopting demand responsive transit, and collaborating with 
transportation network companies (e.g., Uber and Lyft) were common practices in the past year to 
serve areas with low transit demand (e.g., Utah Transit Authority, Pullman Transit, Transit Authority 
of Northern Kentucky, Palm Tran, Miami-Dade Transit, and the Toronto Transit Commission). SMRT 
has been using customized vehicles that separate drivers and passengers into two compartments to 
provide convenient transportation service between hospitals, communities, and dormitories (SMRT 
Corporation Ltd., 2021). 

RIDERSHIP RECOVERY CAMPAIGN 
Many transit agencies have been actively engaged in various public campaigns and advertising efforts 
to maintain/regain ridership during and after epidemic events. These efforts have been particularly 
effective in helping alleviate risk perceptions and fears among potential transit riders. 

When the City of Toronto was put on the WHO’s travel advisory list during the SARS outbreak, the 
Toronto Transportation Commission collaborated with the tourism industry and formed the Toronto 
Tourism Recovery Coalition (Johnson Tew et al., 2008; Goldberg, 2012) to revive the city’s tourism 
activities and mitigate SARS’s impacts on transit ridership. They were able to employ a short-term 
strategy of running advertising campaigns to market the City of Toronto as a safe destination. The 
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coalition focused on alleviating travelers’ fears given their belief that the epidemic was more about 
“psychology than epidemiology” (Johnson Tew et al., 2008).  

Based on personal experience, Peter Shier—former president of the Foote, Cone & Belding Toronto 
agency, the advertising company in charge of helping Toronto bounce back from reduced tourist 
demand—stated that in moments like SARS, industry partnerships, even among competitors, were 
crucial to the recovery (Shier, 2020). As the SARS outbreak was contained, the Toronto 
Transportation Commission adopted different strategies to regain ridership and counteract against 
the harsh reduction experienced in 2003. Implementation of the Ridership Growth Strategy initiatives 
was a major contributor to Toronto Transit Commission’s success (2005a). These strategies included 
(i) improving service quality, such as planning dedicated right-of-way for streetcars, increasing fleet 
size, and enhancing service during peak hours; and (ii) launching promotional activities, such as the 
Volume Incentive Pass program, which provided monthly pass discounts.  

Similarly, the Hong Kong Mass Transit Railway (2004) launched various promotional activities to 
facilitate its ridership recovery. The Hong Kong Airport Express Line provided “2 Trips” tickets to 
attract frequent travelers; “Ride 7 Get 1 Free” tickets for airport workers; free tickets for children; 
half-price tickets for students and the elderly; and discounted tickets for group passengers. For local 
trips, Hong Kong Mass Transit Railway offered a series of promotions, such as “Ride 10 Get 1 Free,” 
“Ride 5 Get Cash Coupons,” and “$2 Holiday Ride,” etc. For additional publicity, it launched an 
Unsung Heroes TV campaign and a thematic campaign based on the Snoopy character to advertise 
the fifth anniversary of the Hong Kong Airport Express Line. These efforts were found to be effective 
in restoring Hong Kong Mass Transit Railway’s safe and reliable image among the general public. 

The current COVID-19 pandemic has occurred when the Internet, social media, and smart phone 
applications have become widely available. Schwartz (2020) pointed out the importance of taking 
advantage of these social network platforms to establish timely and clear communication between 
transit agencies and their passengers. This report suggested that transit agencies should (i) emphasize 
their safety and cleaning protocols to reinstate public confidence in their systems when 
communicating with the public, and (ii) sharing real-time station/vehicle crowding information so 
that riders can conveniently choose their trip times and routes, as the New York Metropolitan 
Transportation Authority and the Chicago Transit Authority have practiced. Finally, the Toronto 
Transit Commission has again launched a fare discount program during the COVID-19 pandemic, 
which is similar to the one they used during the SARS outbreak to attract demand from the area’s 
low-income population.  
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CHAPTER 3: MODELING 
The COVID-19 pandemic’s duration and scale are unprecedented. To understand observed transit 
ridership variations during the current pandemic and to further predict future ridership trends on the 
Chicago Transit Authority’s (CTA’s) rail system, the research team developed a comprehensive 
modeling framework that combines research findings from past events and observations from this 
pandemic. This modeling framework integrates the following: 

i. A Bayesian structural time-series (BSTS) model, which considers the historical trend of 
transit ridership, seasonality, and holidays, to predict counterfactual transit ridership after 
1 March 2020 on the CTA’s rail system. It also compares observed ridership with 
counterfactual ridership to estimate daily percentage loss in ridership during this 
pandemic. 

ii. A dynamics model for daily transit ridership loss on the CTA’s rail system, inspired by 
Wang (2014), which captures the impacts of people’s subjective risk perceptions of this 
pandemic’s evolution and external factors. The former includes objective risk 
measurements, e.g., daily confirmed cases and daily deaths (Wang, 2014), as well as 
media attention, e.g., Google Trends (Fenichel et al., 2013; Winterfelt & Prager, 2010). The 
latter includes executive orders, school closures, and remote working policies. 

iii. A prediction module, which forecasts future media attention on this pandemic using the 
auto regressive integrated moving average (ARIMA) model along with linear regression 
analysis and future daily COVID-19 deaths with the tool that Altieri et al. (2020) developed. 
It also predicts future ridership trends.  

iv. An ordinary least squares (OLS) regression analysis module, which builds the connections 
between socioeconomic characteristics of city neighborhoods and people’s reactions 
toward the pandemic (i.e., obtained from the second component—the dynamics model 
for daily ridership loss).  

BAYESIAN STRUCTURAL TIME SERIES 
The Bayesian structural time series (BSTS) is an analysis technique that combines feature selection 
and time-series forecasting (Scott & Varian, 2014). In general, a structural time-series model contains 
three components: Kalman filtering for long-term trends and seasonal components, spike-and-slab 
regression for contemporaneous covariates, and Bayesian model averaging for the final model 
selection (Scott & Varian, 2015).  

An observation equation that relates the observed time-series variables to a set of latent state 
variables and a set of state equations that dictate how the latent state variables evolve over time 
under uncertainties generally define BSTS models. In this study, the research team set up the 
observation equation of the Bayesian structural time series model to connect the daily ridership, 𝑟𝑟𝑡𝑡 , 
with a vector of latent variables, including: (i) a semi-local linear trend, which is related to the value 
of trend at time 𝑡𝑡 (denoted as 𝜇𝜇𝑡𝑡), the slope of 𝜇𝜇𝑡𝑡  from time 𝑡𝑡 to 𝑡𝑡 + 1 (denoted as 𝛿𝛿𝑡𝑡), long-term 
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slope of 𝜇𝜇𝑡𝑡  (denoted as 𝐷𝐷), and the learning rate of local trend (denoted as 𝜌𝜌, where 𝜌𝜌 < 1); (ii) a day-
of-week seasonality component, with the s-th element at time t being denoted by 𝛾𝛾𝑡𝑡,𝑠𝑠

𝑤𝑤 ; (iii) a monthly 
annual seasonality component, with the s-th element at time t being denoted as 𝛾𝛾𝑡𝑡,𝑠𝑠

𝑚𝑚 ; (iv) and 
contemporaneous 𝒙𝒙𝒕𝒕 with static coefficients 𝜷𝜷𝒕𝒕, which captures effects of special days such as 
holidays. A series of error terms are defined to capture the uncertainties, i.e., 𝜖𝜖𝑡𝑡, 𝜂𝜂𝜇𝜇,𝑡𝑡, 𝜂𝜂𝛿𝛿,𝑡𝑡, 𝜂𝜂𝑑𝑑,𝑡𝑡  and 
𝜂𝜂𝑚𝑚,𝑡𝑡, and they are each assumed to follow a zero-mean Gaussian distribution, but with variances 𝜎𝜎𝜖𝜖2, 
𝜎𝜎2𝜇𝜇,𝑡𝑡, 𝜎𝜎2𝛿𝛿,𝑡𝑡, 𝜎𝜎2𝑑𝑑,𝑡𝑡, and 𝜎𝜎2𝑚𝑚,𝑡𝑡, respectively. The BSTS models for counterfactual ridership prediction 
are written as follows: 

𝑟𝑟𝑡𝑡 = μ𝑡𝑡 + γ𝑡𝑡𝑤𝑤 + γ𝑡𝑡𝑚𝑚 + β𝑡𝑡
𝑇𝑇𝑥𝑥𝑡𝑡 + ϵ𝑡𝑡, (1) 

Figure 19. Equation. BSTS observation equation. 

𝜇𝜇𝑡𝑡+1 = 𝜇𝜇𝑡𝑡 + 𝛿𝛿𝑡𝑡 + 𝜂𝜂𝜇𝜇,𝑡𝑡, (2) 

Figure 20. Equation. BSTS semi-local linear trend equation. 

𝛿𝛿𝑡𝑡+1 = 𝐷𝐷 + 𝜌𝜌(𝛿𝛿𝑡𝑡 − 𝐷𝐷) + 𝜂𝜂𝛿𝛿,𝑡𝑡, (3) 

Figure 21. Equation. BSTS semi-local linear trend transition equation. 
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+ 𝜂𝜂𝑑𝑑,𝑡𝑡  (4) 

Figure 22. Equation. BSTS day-of-week seasonality equation. 
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𝑚𝑚 =  −�𝛾𝛾𝑡𝑡,𝑠𝑠

𝑚𝑚
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𝑠𝑠=2

+ 𝜂𝜂𝑚𝑚,𝑡𝑡  (5) 

Figure 23. Equation. BSTS monthly annual seasonality equation. 

Where Equations (1) defined the observation equation, Equations (2) and (3) define the semi-local 
linear trend, and Equations (4) and (5) define the weekly and monthly seasonality components, 
respectively. To evaluate the BSTS models’ performance, we first use ridership data from a training 
set (e.g., those from 2001 to 2018) to train the BSTS models, and then predict the ridership data in a 
test set (e.g., those in 2019) with the trained models. The forecasting errors are measured with the 
weighted mean absolute percentage error (WMAPE), defined as follows: 
 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 =
∑ |𝑟𝑟𝑡𝑡 − 𝑟𝑟𝑡𝑡�|𝑇𝑇
𝑡𝑡=1

∑ |𝑟𝑟𝑡𝑡|𝑇𝑇
𝑡𝑡=1

 
(6) 

Figure 24. Equation. Weighted mean absolute error. 
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The research team focused on station-level ridership at the Chicago Transit Authority’s rail stations 
and historical data obtained through the Chicago Open Data Portal (CTA, 2021). To perform the final 
model fitting for each of these rail station and to obtain counterfactual ridership 𝑟𝑟𝑡𝑡�  during the 
pandemic, the research team used the “bsts” (Bayesian structural time series) package in R statistical 
software (Scott, 2020). In this context, variable 𝑟𝑟𝑡𝑡 denotes the observed ridership at time 𝑡𝑡. The 
ridership percentage loss on each day at each Chicago Transit Authority rail station can then be 
calculated as follows:  

 Δ𝑡𝑡 =
𝑟𝑟𝑡𝑡� − 𝑟𝑟𝑡𝑡
𝑟𝑟𝑡𝑡�

,    ∀𝑡𝑡. (7) 

Figure 25. Equation. Ridership percentage loss on day 𝒕𝒕. 

DYNAMICS MODEL FOR RIDERSHIP LOSS 
Based on the literature findings, ridership loss at each Chicago Transit Authority rail station could be 
attributed to people’s perceptions of the epidemic’s evolution, including objective risk measures 
(e.g., daily confirmed cases and daily deaths [Wang, 2014]), as well as subjective risk measures and 
media attention (e.g., Google Trends [Fenichel et al., 2013; Winterfelt & Prager, 2010]). Compared to 
previous epidemics, this pandemic has lasted longer and has been more widespread than any other 
modern pandemic and the use of new technologies has resulted in unique socioeconomic impacts. All 
of these characteristics require consideration in developing the dynamics model. 

Many industries and schools have widely used remote access technologies during this pandemic to 
deter the COVID-19 virus from spreading, which has caused public transit demand to plummet. 
Government-mandated stay-at-home orders have also further discouraged people from leaving their 
homes and have further depressed transit demand from almost everyone except those people whose 
work has been deemed essential to ensuring society’s day-to-day functioning (e.g., medical 
professionals, grocery store workers, and logistics workers). 

Many media reports have highlighted “caution fatigue” during this pandemic (Brazell, 2020; Dozois, 
2020). People have been less vigilant about the virus and about following the Centers for Disease 
Control and Prevention’s guidelines as the pandemic drags on. Psychological studies also indicate that 
recurrent and continuous exposure to fear, especially when people are adjusting their expectations 
to outcomes, can lead to extinction of fear (Davis et al., 2006; Hofmann, 2008). The COVID-19 
pandemic has lasted about 15 months in the United States (by the writing of this report) and the case 
fatality rate since March 2020 has continuously decreased after the end of May, as shown in Figure 
26. The infection fatality rate is calculated by dividing the cumulative deaths with the cumulative 
cases, with data obtained from the New York Times (2021). Given declining expectations of the risks 
and the pandemic’s prolonged effects, “caution fatigue” of COVID-19 is inevitable and could 
significantly impact people’s behaviors.  
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Figure 26. Graph. Infection fatality rate of COVID-19 in the United States. 

In light of these aforementioned observations, this study’s research team considered daily COVID-19 
deaths, daily normalized Google query volumes of COVID-19–related subjects, caution fatigue, 
remote learning/working, and stay-at-home executive orders as factors that have led to daily 
ridership variations on the Chicago Transit Authority’s rail stations during this pandemic.  

The research team obtained daily COVID-19 deaths in Chicago from the New York Times (2021). The 
daily normalized Google Trends data provided a score per day of the proportion of searches on a 
particular topic over all searches in a particular place and time (Rogers, 2016). The research team 
used this as a proxy for people’s awareness to the pandemic and access to news outlets and epidemic 
data. They used the keyword “covid” and the technique presented in Dyachenko (2021) to extract the 
Google Trends scores in Illinois from 1 March 2020 to 1 March 2021, as presented in Figure 27. They 
also obtained detailed information about stay-at-home orders from the City of Chicago (2021). The 
City of Chicago issued two stay-at-home orders during this pandemic. The first one started on 26 
March 2020 and ended on 3 June 2020. The second one started on 16 November 2020 and ended on 
22 January 2021. However, the research team did not have detailed data for the dates and duration 
of remote working in each industry and those of remote learning in different schools/universities. The 
research team therefore assumed that these events came into effect on 17 March 2020, when the 
Governor of Illinois, JB Pritzker, issued school closure executive orders. They also assumed that these 
events were constantly enforced throughout the study period. This model will capture caution 
fatigue.  
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Figure 27. Graph. Google Trends score from 1 March 2020 to  

1 March 2021 for the “covid” search query. 

To define the modeling framework, the research team let an integer variable 𝑑𝑑𝑡𝑡  denote the number 
of deaths on day 𝑡𝑡; an integer variable 𝑞𝑞𝑡𝑡  denote the Google Trends score on day 𝑡𝑡; a binary 
variable 𝑐𝑐𝑡𝑡 be equal to 1 if remote learning/working is effective on day 𝑡𝑡 and 0 otherwise; a binary 
variable 𝑠𝑠𝑡𝑡 be equal to 1 if the stay-at-home order is effective on day 𝑡𝑡 and 0 otherwise.  

Similar to Wang (2014), this study’s research team modeled the impacts of daily deaths and daily 
Google search volumes on transit ridership on the Chicago Transit Authority’s rail system based in 
two phases, i.e., fresh fear and residual fear. On day 𝑡𝑡, the reported daily deaths or the queries of 
COVID-19 topics through Google Trends represented COVID-19–related risks, which directly induced 
ridership loss on day 𝑡𝑡, referred to as fresh fear. The ridership loss due to fresh fear on day 𝑡𝑡 was 
calculated as 𝑑𝑑𝑡𝑡𝐿𝐿𝑑𝑑 and 𝑞𝑞𝑡𝑡𝐿𝐿𝑞𝑞  for daily deaths and Google queries, respectively, where 𝐿𝐿𝑑𝑑 (𝐿𝐿𝑞𝑞) was the 
percentage of counterfactual ridership loss related to each reported death (each unit of Google 
Trends query score). Since fresh fear did not dissipate instantly, it imposed prolonged but decaying 
effects after day 𝑡𝑡, which are referred to as residual fear. Thus, similar to Wang (2014), transit 
ridership loss on day 𝑡𝑡 due to the residual effects of fear that reported COVID-19 deaths induced on 
day 𝑡𝑡′ <  𝑡𝑡 can be calculated by 𝑑𝑑𝑡𝑡′𝐿𝐿𝑑𝑑𝑒𝑒−𝜏𝜏𝑑𝑑�𝑡𝑡−𝑡𝑡

′�, and that of fear related to Google queries on day 
𝑡𝑡′ <  𝑡𝑡 can be calculated by 𝑞𝑞𝑡𝑡′𝐿𝐿𝑞𝑞𝑒𝑒−𝜏𝜏𝑞𝑞�𝑡𝑡−𝑡𝑡

′�, where 𝜏𝜏𝑑𝑑  and 𝜏𝜏𝑞𝑞 are the diminishing rate of the death-
related fear and Google Trends–related fear, respectively. To capture the caution fatigue 
phenomenon, the research team hypothesized that people’s risk perception decreases in a similar 
manner as the fear dissipation process, and that people react differently to those two types of risk 
measurements. We defined 𝑓𝑓𝑑𝑑  and 𝑓𝑓𝑞𝑞  as the decreasing rate of the risk perceptions for deaths and 
Google queries, respectively. Therefore, the relative risk perception of deaths and Google queries on 
day 𝑡𝑡 are 𝑒𝑒−𝑡𝑡𝑓𝑓𝑑𝑑 and 𝑒𝑒−𝑡𝑡𝑓𝑓𝑞𝑞 , respectively. 

Because remote learning/working and stay-at-home orders are external factors, people have to 
comply with these events and fear no longer drives their actions. The research team thus focused on 
the direct ridership loss these events induced and ignored their residual effects and related 
perception reduction. The research team defined 𝐿𝐿𝑐𝑐  and 𝐿𝐿𝑠𝑠 as the fixed ridership percentage loss as a 
consequence of these two types of events, respectively. 
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Summarizing the aforementioned factors, the estimated ridership percentage loss on day 𝑡𝑡, denoted 
as 𝛥𝛥t� , can be calculated as follows, 

 Δt� = 𝑒𝑒−𝑡𝑡𝑓𝑓𝑑𝑑 � 𝑑𝑑𝑡𝑡′𝐿𝐿𝑑𝑑𝑒𝑒−𝜏𝜏𝑑𝑑�𝑡𝑡−𝑡𝑡
′�

𝑡𝑡

𝑡𝑡′=0

+ 𝑒𝑒−𝑡𝑡𝑓𝑓𝑞𝑞 � 𝑞𝑞𝑡𝑡′𝐿𝐿𝑞𝑞𝑒𝑒−𝜏𝜏𝑞𝑞�𝑡𝑡−𝑡𝑡
′�

𝑡𝑡

𝑡𝑡′=0

+ 𝑐𝑐𝑡𝑡𝐿𝐿𝑐𝑐 + 𝑠𝑠𝑡𝑡𝐿𝐿𝑠𝑠 . (8) 

Figure 28. Equation. Dynamics model equation for estimating the ridership percentage loss. 

The goal of Equation (8) is to find the values of all the aforementioned parameters such that Δt�  is 
close to the actual daily reduction Δ𝑡𝑡 as obtained from the first step. However, given the complicated 
mathematical form, a conventional regression tool is not viable to estimate all parameters in this 
model. The research team therefore uses a nonlinear optimization module implemented with the 
SciPy package in Python (Jones et al., 2001) to minimize the quadratic loss function. The nonlinear 
program is written as follows, 

 
min

𝐿𝐿d,𝐿𝐿𝑞𝑞,𝐿𝐿𝑐𝑐,𝐿𝐿𝑠𝑠,𝜏𝜏𝑑𝑑,𝜏𝜏𝑞𝑞,𝑓𝑓𝑑𝑑,𝑓𝑓𝑞𝑞
             ��Δ𝑡𝑡 − Δt� �

2
𝐸𝐸𝐸𝐸𝑑𝑑

𝑡𝑡=0

 (9) 

Figure 29. Equation. Quadratic loss function between the observed ridership loss and  
estimated ridership loss. 

 𝑠𝑠. 𝑡𝑡.                        1 −  Δt� ≥ 0, ∀𝑡𝑡 (10) 

Figure 30. Equation. Non-negativity constraints in the nonlinear optimization program. 

where Equation (9) seeks to minimize the squared difference between observed ridership and the 
model’s estimated ridership, and Equation (10) enforces a nonnegativity constraint. The 𝑬𝑬𝑬𝑬𝑳𝑳 
parameter could be defined as any number of days for the model to be trained; for this project, its 
value is set to 365 since the training data was from 1 March 2020 to 1 March 2021. It should be noted 
that using nonlinear optimization to obtain the parameter values may lead to overfitting (given noises 
and outliers). To avoid overfitting and to ensure its performance for prediction, the research team 
used cross-validation to find the suitable stopping criterion for nonlinear optimization (Arlot & 
Celisse, 2010). 

PREDICTION MODULE 
The purpose of the dynamics model is first to explain ridership reduction on the Chicago Transit 
Authority’s rail system as a function of people’s reaction to daily reported deaths, executive orders, 
and media exposure (i.e., Google Trends). The second main objective is to be able to apply it for 
forecasting ridership in the near future. As explained in the previous section, Equation (8) estimates 
daily ridership loss as a function of daily deaths, daily Google Trends score, stay-at-home orders, 
remote working/remote learning, and estimated counterfactual ridership. Hence, to predict future 
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ridership on the Chicago Transit Authority’s rail system, all these independent variables (i.e., inputs to 
our model) need to be forecasted as well.  

For starters, the research team assumed that there would be no stay-at-home orders in the near 
future, because more and more people are getting vaccinated and the situation has been 
continuously ameliorating. Yet, they assumed that remote learning/remote working would be still in 
place during the forecast period. 

To forecast the daily reported deaths, the research team used the tool Altieri et al. (2020) developed. 
This tool focuses on predicting the number of COVID-19–related deaths for each county in the United 
States. It uses county-level reported COVID-19 death counts from USAFacts or New York Times (2021) 
demographic data, health care data, and mobility data. This reference developed several statistical 
and machine learning prediction algorithms to capture different trends in the data. For this project, 
the research team selected the New York Times (2021) as the COVID-19 death data source and used 
the ensemble module to predict future COVID-19 deaths until July 31, 2021; please see Figure 31.  

 
Figure 31. Graph. Observed and predicted daily reported deaths from 1 March 2020 to 31 July 2021. 

Another main piece of information needed is forecasting the Google Trends index. This is not a trivial 
task because the Google Trends score may fluctuate according to media coverage, executive orders, a 
rise in COVID-19 cases, or any other event that may incite people to seek information about the virus. 
Here, the research team assumed that the score was going to continue its current trend, and then 
developed an ARIMA model to predict the Google Trends score for the near future. The research 
team used the R package “astsa” (Stoffer, 2020) for this task. Based on Figure 27, the Google Trends 
data is related to time and potentially involves the quadratic term of time. Thus, the research team 
considered the regression model of Google Trends data to be, 

 𝑞𝑞𝑡𝑡 = 𝜙𝜙0 + 𝜙𝜙1𝑡𝑡 +  𝜙𝜙2𝑡𝑡2 + 𝜖𝜖𝑡𝑡′. (11) 

Figure 32. Equation. Regression model to fit Google Trend data. 
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With the “astsa” package’s regression analysis tool, the estimation of parameters 𝜙𝜙�0,𝜙𝜙�1 and 𝜙𝜙�2 were 
obtained, and the results indicated that the linear term 𝑡𝑡 and quadratic term 𝑡𝑡2 are significant at a 
99% confidence interval. The ARIMA model analyzed and predicted the residual 𝜖𝜖𝑡𝑡′. Based on its 
autocorrelation function and partial autocorrelation function of the series, the ARIMA(0,1,1) ×
(0,1,1)7 model is appropriate; please see the measurements in Figure 33.  

 
Figure 33. Graph. ARIMA model fit summary. 

Finally, the research team predicted the Google Trends data with the aforementioned regression 
model and ARIMA model. It is plotted along with the observed trend data in Figure 34. The forecasted 
Google Trends values, daily reported deaths projection, assumptions of external factors, and BSTS 
counterfactual ridership collectively provide the necessary information for future ridership prediction 
at each station on the Chicago Transit Authority’s rail system.  
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Figure 34. Graph. Observed and predicted Google Trends score from 1 March 2020 to 31 July 2021. 

ORDINARY LEAST SQUARES REGRESSION 
Many studies, as reviewed in Chapter 2, have observed the different magnitudes of transit ridership 
reduction among different urban areas and sociodemographic groups during past and current 
pandemics. Hu and Chen (2021) investigated the relationship between sociodemographic 
characteristics and static ridership losses observed by 30 April 2020. In this study, the dynamics 
model presented in the previous sections attributed ridership variation into eight factors. The 
research team thus set up an OLS model to fit these eight factors with sociodemographic 
characteristics to try to identify the roles of sociodemographic characteristics in ridership dynamic 
fluctuation. 

The selected sociodemographic characteristics are summarized in Table 1. The research team 
considered the land-use mix index (LUM) as one of the variables which is meant to represent the 
degrees of mixed land use. It ranges from 0 to 1, with 0 being homogeneous, while 1 being very 
heterogeneous (Cervero & Kockelman, 1997). The LUM is calculated as follows: 

𝐿𝐿𝐿𝐿𝑊𝑊 = �
−1

𝑙𝑙𝐸𝐸(𝑁𝑁)
⋅ ∑ 𝑝𝑝𝑖𝑖𝑁𝑁

𝑖𝑖=1 ⋅ 𝑙𝑙𝑙𝑙(𝑝𝑝𝑖𝑖), 𝑁𝑁 > 1,
0,                                              𝑁𝑁 = 1,

  (12) 

Figure 35. Equation. Land-use mix (LUM) index. 

where 𝑁𝑁 is the number of land-use types in each catchment area, and 𝑝𝑝𝑖𝑖  is the percentage of land 
type 𝑖𝑖 within the area. The research team extracted demographic data and employment information 
from the US Census Bureau (2019, 2021) and land-use data from the Chicago Metropolitan Agency 
for Planning’s land-use inventory (2015). 
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Table 1. Variables Considered in the OLS Regressions 

Variable Description 
prop_poverty Proportion of population under the poverty line 
prop_age_0_24 Proportion of population between 0 and 24 years old 
prop_age_25_39 Proportion of population between 25 and 39 years old 
prop_age_40_64 Proportion of population between 40 and 64 years old 
prop_edu Proportion of population with at least a high school degree 
prop_employ Proportion of population employed 
prop_R_Manuf Proportion of residents with jobs in the manufacturing industry 
prop_R_Trade Proportion of residents with jobs in the wholesale or retail trade industry 
prop_R_Edu Proportion of residents with jobs in the educational service industry 
prop_R_Health Proportion of residents with jobs in the health industry 
prop_W_Manuf Proportion of workers with jobs in the manufacturing industry 
prop_W_Trade Proportion of workers with jobs in the wholesale or retail trade industry 
prop_W_Edu Proportion of workers with jobs in the educational service industry 
prop_W_Health Proportion of workers with jobs in the health industry 
prop_white Proportion of white population 
prop_black Proportion of black population 
prop_indian.native Proportion of Indian native population 
prop_asian Proportion of Asian population 
prop_residential Proportion of residential land 
prop_commerical Proportion of commercial land 
prop_institute proportion of institutional land 
prop_industrial proportion of industrial land 
prop_transportation proportion of land used for transportation purposes 
prop_openspace proportion of open space land 
LUM The land-use mix index 

 

The data of the aforementioned variables are collected in different geographic units, including census 
tracts, census blocks, and census block groups. Based on the assumption that people generally would 
approach the closest Chicago Transit Authority rail station from their origin, the research team first 
determined the stations’ catchment area using Voronoi Tessellation. The zoomed-in view of station 
catchment areas for the Chicago Transit Authority rail stations is shown in Figure 36. For the outer-
most stations, a maximum range of five miles was set for the catchment area to avoid an unrealistic 
catchment area size. The research team then used the population or area of the intersected region as 
weights to aggregate these variables’ data to each station on the Chicago Transit Authority’s rail 
system.  
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Figure 36. Map. Catchment area of each Chicago Transit Authority rail station based on proximity. 

NUMERICAL ANALYSIS 
The research team developed one BSTS model per Chicago Transit Authority rail station in the first 
step of the modeling procedure. The models were fitted to 140 valid stations, eliminating those 
without valid demographical data or valid ridership time-series data from this analysis. Figure 37 
presents observed ridership for all stations from 1 March 2020 to 1 March 2021. Each faded red line 
is a station, and the black line shows the mean over all stations. Similarly, Figure 38 shows the plot of 
all fitted BSTS models for each station. 

 
Figure 37. Graph. Daily observed ridership for all CTA rail stations (red lines)  

along with the daily mean value over all CTA rail stations (black line). 
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Figure 38. Graph. Daily counterfactual ridership estimated through BSTS models for  

all CTA rail stations (red lines) along with the daily mean value over all CTA rail stations (black line). 

Regarding the BSTS models’ performance, the research team used the weighted mean absolute 
percentage error (WMAPE), defined as follows: 

 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 =
∑ |𝑟𝑟𝑡𝑡 − 𝑟𝑟𝑡𝑡� |𝑇𝑇
𝑡𝑡=1
∑ 𝑟𝑟𝑡𝑡𝑇𝑇
𝑡𝑡=1

 (13) 

Figure 39. Equation. Weighted mean absolute percentage error. 

The histogram for the WMAPE statistics for all CTA rail stations included in this analysis are presented 
in Figure 40. The mean WMAPE among all CTA rail stations resulted in 0.211, only having nine outliers 
above 0.4 due to some stations having missing data or lower ridership with random fluctuations 
which are more unreliable to predict. Nonetheless, the WMAPE being significantly lower than 1 
indicate very good fits. 

 
Figure 40. Graph. WMAPE statistic histogram. 
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Once the research team developed the BSTS models, they solved the nonlinear optimization problem 
presented in Equations (9) and (10) for each of the Chicago Transit Authority rail stations. To avoid 
overfitting with outliers and random noise, they performed a four-fold cross-validation (CV) to select 
the suitable stopping criterion for this nonlinear optimization problem. The four-fold CV splits the 
data into four data subsets. It solves the problem with three data folds and uses the remaining fold 
for validation. The model’s validation error for a given stopping criterion is then the average of the 
values computed in all runs of the optimization. Please see Figure 41 for an example. Thus, by 
iterating over several stopping criteria, the one with the least validation error will be selected. 
Through preliminary tests of several stations with four-fold CV, the research team determined the 
stopping criterion to be the first derivative of the objective function smaller or equal to 10−3 and 
used this criterion for all Chicago Transit Authority rail stations.  

 
Figure 41. Graph. Example for four-fold cross-validation. 

The summary statistics for the dynamics model parameters are presented in Table 2. The table also 
shows the percentage of Chicago Transit Authority rail stations for which the model parameter is 
found to be statistically significant at a 95% confidence level. It reveals that remote learning/work has 
induced an average daily ridership loss for the Chicago Transit Authority’s rail system of 
approximately 70% after 17 March 2020, as represented by 𝐿𝐿𝑐𝑐. In contrast, the average percentage 
ridership losses related to stay-at-home orders for other activities, as represented by 𝐿𝐿𝑠𝑠, is only 2.5%. 
This is expected because remote work/learning policies eliminate most commuting needs that form a 
significant part of daily ridership and, thus, is the major reason behind ridership reductions. In 
contrast, the stay-at-home orders mainly limit social activities such as gatherings, parties, and close-
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contact group sports, which may contribute to a small portion of the daily ridership. The ridership loss 
due to “fresh fear” for each reported death, 𝐿𝐿𝑑𝑑, is 0.23% while the “fresh fear” due to each Google 
Trends score is 0.62% per score. Taking into account the typical number of daily reported deaths, and 
the typical Google Trends scores, the relatively low value of 𝐿𝐿𝑑𝑑 generally hints to the fact that the 
vast majority of CTA rail ridership reductions is due to executive orders rather than people’s self-
defensive behavior. It is important to note that the 𝐿𝐿𝑐𝑐 term is found to be significant to explain 
ridership reductions at all Chicago Transit Authority rail stations. However, the 𝐿𝐿𝑠𝑠 term is found to be 
significant only among approximately 55.2% of Chicago Transit Authority rail stations. Other terms 
are significant among about 85%–92% of Chicago Transit Authority’s rail stations. 

 

Table 2. Summary Statistics of the Dynamics Model Parameters across All Stations 

Parameter Mean Standard Dev. Percent Significant (%) 
𝐿𝐿𝑐𝑐  0.70 0.11 100 
𝐿𝐿𝑠𝑠 0.025 0.023 55.2 
𝐿𝐿𝑞𝑞  0.0062 0.011 88.1 
𝐿𝐿𝑑𝑑  0.0023 0.0027 90.3 
𝜏𝜏𝑑𝑑 0.47 0.35 85.1 
𝜏𝜏𝑞𝑞  0.74 0.27 89.6 
𝑓𝑓𝑑𝑑 0.15 0.28 85.1 
𝑓𝑓𝑞𝑞  0.16 0.21 91.8 

 

To show the fitting of the model, two representative figures are presented below based on two 
distinct ridership patterns that were observable among all Chicago Transit Authority rail stations. 
First, the pattern for approximately 50 stations looked very similar to Figure 42. This pattern is 
generally characterized by having a pre-COVID-19 ridership above 2,500 people on weekdays. 
Weekday ridership drastically decreased after the outbreak and remained relatively “flat” at 
approximately 10%–15% of pre-COVID-19 ridership. The second pattern is shown in Figure 43, where 
typical ridership is below 2,500 people on weekdays. Weekday ridership during this pandemic stayed 
at approximately 25%–30% of pre-COVID-19 ridership. Approximately 30 stations had this very 
distinct pattern. The remaining stations (approximately 90) have a “mixed” pattern, which is in 
between these two extremes. The dynamic model’s results, including parameters to reproduce all the 
fitted curves, are presented in the appendix. 
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Figure 42. Graph. Dynamics model result for CTA rail station 360 as compared to the  

observed ridership from 1 March 2020 to 1 March 2021. 

 
Figure 43. Graph. Dynamics model result for CTA rail station 420 as compared to the  

observed ridership from 1 March 2020 to 1 March 2021. 

After all curves were fitted, the resulting parameters were used for forecasting purposes. The 
forecast was carried out up to July 31 given the limited availability of COVID-19 deaths forecast, as 
presented in the previous sections. For illustration purposes, Figures 44 and 45 present the 
forecasted ridership for Chicago Transit Authority stations 360 and 420, respectively. However, the 
appendix shows all the fitted curves and forecasting.  
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Figure 44. Graph. Dynamics model forecast for CTA rail station 360 up to 31 July 2021.  

 
Figure 45. Graph. Dynamics model forecast for CTA rail station 420 up to 31 July 2021. 

Both forecasts show a slight upward trend as fear diminishes over time and the Google Trends, i.e., 
media attention, dissipates. It is important to note that most Chicago Transit Authority rail stations 
have a flat to slight upward trend given diminishing fear, but still remain with ridership under 30%–
40% of pre-COVID-19 ridership because remote learning/working, 𝑐𝑐𝑡𝑡, remains the major ridership 
reductor in the forecast and is assumed to be constant during the study period. Given this and the 
model’s exclusion of other variables such as tourists returning to Chicago and/or vaccination rates, 
this model’s forecast is a conservative one.  
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To show the effect of the 𝑐𝑐𝑡𝑡𝐿𝐿𝑐𝑐 term in Equation (8), Figures 46 and 47 show the recovery process 
under a hypothetical reopening of Chicago, (i.e., 𝑐𝑐𝑡𝑡  =  0) on 1 July 2021. It is worth noting that these 
hypothetical predictions do not consider the “new normal” conditions for people who may not return 
to daily transit use given their remote working opportunities.  

 
Figure 46. Graph. Hypothetical forecast for CTA station 360 up to 31 July 2021, where 𝒄𝒄𝒕𝒕 = 𝟎𝟎.  

 
Figure 47. Graph. Hypothetical forecast for CTA station 420 up to 31 July 2021, where 𝒄𝒄𝒕𝒕 = 𝟎𝟎.  

In contrast, because of the curve fitting’s accuracy from 1 March 2020 until 1 March 2021, the models 
may provide insights on people’s reaction to the executive orders, daily reported deaths, and news 
coverage.  
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As mentioned in the previous section, the research team performed an OLS regression across all 
Chicago Transit Authority rail stations to try to explain variability in the parameters for each station. 
The full regression results are presented in the appendix; however, Table 3 presents the summarized 
results over all parameters. Here, the research team only presents the parameter estimate and level 
of significance.  

Table 3. Summary of the Regressions on the Dynamics Model Parameters 

 𝐿𝐿𝑐𝑐 𝐿𝐿𝑑𝑑 τ𝑑𝑑  𝑓𝑓𝑑𝑑  𝐿𝐿𝑞𝑞 𝜏𝜏𝑞𝑞 𝑓𝑓𝑞𝑞  𝐿𝐿𝑠𝑠 
(Intercept) -0.0709 -0.0046 -1.4455 -1.8096 0.0276 3.0831 -0.953 0.4347* 
prop_poverty -0.4291** -0.0009 0.7409 -0.3545 0.0212 0.2324 -0.864 . -0.1204* 
prop_age_0_24 0.6122 0.0088 2.5930 1.110 -0.0294 -0.9698 1.267 -0.1988 
prop_age_25_39 0.5345* 0.0041 1.8132 0.9083 -0.0109 -0.1542 0.978 -0.0063 
prop_age_40_64 0.4102 -0.0017 2.0395 0.0198 0.0242 -0.0242 2.013 -0.1396 
prop_edu -0.1406 -0.0453 -6.1063 -3.4346 0.0189 2.4813 -0.282 0.3706 
prop_employ 0.3270 0.0114 0.1071 0.9811 -0.0524 -1.6628 0.300 -0.2727 . 
prop_R_Manuf 0.1101 -0.0398 5.1503 2.7129 -0.1308 -16.648 . -0.239 0.1580 
prop_R_Trade -2.5427 . -0.1066 . -12.6226 -10.404 -0.3310 20.749* -9.792 . -0.4643 
prop_R_Edu -0.2681 0.0701 . 5.2539 6.620 0.3789* 3.5318 1.743 0.3360 
prop_R_Health 1.6230 0.0026 3.0859 -0.4018 0.0451 -11.161 . 4.394 0.0848 
prop_W_Manuf -0.0377 -0.0067 0.7578 -0.6130 -0.0038 0.0520 -0.295 -0.0426 
prop_W_Trade 0.0127 0.0013 . 0.1163 0.1948** 0.0003 -0.1164 0.078 0.0084 
prop_W_Edu 0.0213 -0.0045 -0.3562 -0.4409 -0.0111 0.4550 -0.272 -0.0519 . 
prop_W_Health -0.0008 0.0001 0.0237 0.0046 0.0008 0.0097 -0.005 0.0010 
prop_white 0.1854 . -0.0048 0.1492 0.1080 0.0082 -0.3737 -0.233 -0.0983** 
prop_black 0.0484 -0.0055 -0.3852 0.4113 -0.0065 -0.2773 -0.099 -0.0418 
prop_indian.native 1.5067 -0.2226* -8.2918 -8.5239 -0.4632 -11.660 -5.346 -0.0940 
prop_asian 0.3219** -0.0001 0.5709 0.5425 0.0136 -0.1945 -0.128 -0.0379 
prop_residential -0.0358 0.0009 -0.6731 1.1379* 0.0130 -0.0509 -0.232 0.0176 
prop_commerical -0.1306 0.0018 -0.7031 0.9217 0.0596** 0.0897 -0.463 0.0151 
prop_institute -0.0811 0.0047 -0.5168 0.9324 . 0.0232 -0.0537 -0.138 0.0854 . 
prop_industrial -0.3701* 0.0043 -0.7599 0.8550 0.0021 0.4628 -0.619 0.0128 
prop_transportation -0.0698 0.0066 -0.3377 1.3317 . 0.0335 0.0254 -0.082 0.0394 
prop_openspace -0.1491 0.0062 0.5142 1.1605 * 0.0088 0.0569 -0.211 0.0539 
LUM 0.0884 0.0007 0.6130 -0.1421 0.0095 -0.8564* 0.389 -0.0385 

𝑹𝑹𝟐𝟐 0.743 0.221 0.224 0.245 0.281 0.165 0.1468 0.185 

Significance codes: “***” 0.001, “**” 0.01, “*” 0.05, “ .” 0.1, “  ” 1.  
 

The first thing to notice is that the 𝑅𝑅2 values for seven of the eight regressions are below 0.3, except 
for the regression of the 𝐿𝐿𝑐𝑐 parameter, which represents the percentage reduction for remote 
learning/working. Remote learning/working targets certain groups of the population (e.g., students), 
while others must go to their workplace in person (e.g., health care personnel). In contrast, the rest 
of the seven factors all pose impacts to the general population. Thus, it is expected that 
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socioeconomic characteristics play a much more significant role in remote working–related ridership 
loss, compared to other factors.  

For the term 𝐿𝐿𝑐𝑐, the proportion of the population under the poverty line is significant with a 99% 
confidence level. It is negatively correlated with the value of 𝐿𝐿𝑐𝑐 and is consistent with literature 
review findings showing lower income individuals having experienced less behavioral change given a 
lack of flexibility in their lifestyles. The second main predictor is the proportion of Asian people within 
the catchment area, indicating that a higher proportion of Asian people is associated with a higher 
drop in ridership at Chicago Transit Authority rail stations after the first executive order. The 
proportion of white people was also positively associated with ridership drops at these stations. 

The proportion of industrial land is a significant variable indicating that a higher proportion of 
industrial land is associated with lower drops in ridership at Chicago Transit Authority rail stations. 
Likewise, the proportion of residents working on trade jobs was significantly associated with lower 
drops in ridership. Industrial land and trade jobs were significantly associated with lower drops in 
ridership likely because many trades were considered “essential.” Workers in these trades had to 
continue traveling during the pandemic (Illinois Department of Commerce, 2020).  

For the rest of the models, one main observation is that socioeconomic characteristics are not good 
predictors of people’s “fear” (i.e., travel behavior during the pandemic). This may hint to the fact that 
the major drivers of ridership decline at Chicago Transit Authority rail stations are the executive 
orders and the “new normal” resulting from people decreasing their need to travel daily given their 
remote working opportunities. The literature suggests that transit ridership loss purely due to fear 
recovered within months; the evidence from this regression analysis also suggests that the Chicago 
Transit Authority’s rail ridership could follow the same trend (i.e., to “new normal” levels) once all 
restrictions are lifted and schools fully reopen in Illinois.  
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CHAPTER 4: CONCLUSIONS 
In the first half of this report, the research team collected quantitative and qualitative research 
findings for previous prolonged events in the literature review, consisting of terrorist attacks and 
epidemic events around the world. These events abruptly impacted travel behaviors that historically 
had been attributed to transit users’ risk perceptions. The research team thus paid particular 
attention to how these events caused fear-based responses from the population, which altered their 
travel behavior. They collected information about how transit agencies counteracted the impacts of 
these prolonged events and summarized these experiences for future reference. 

Although terrorist attacks induced an immediate response from the public, their effects often lasted 
one to four months for smaller scale attacks (such as the ones Madrid, London, and Tokyo 
witnessed), or one to two years for major attacks (such as the 9/11 attacks). Studies have shown that 
not only did riders reduce their use of the attacked transportation modes, but they also shifted 
modes. Ridership losses after terrorist attacks partially resulted from changes in service supply, such 
as station closures immediately after the attack (as in London) or elevated security measures, which 
increased travel times and caused extra travel inconveniences (such as after 9/11). These 
observations from past events suggest that any service reduction during or after COVID-19 can 
significantly influence riders’ travel behaviors. 

Although past epidemics considered in this study have varied from more localized outbreaks (such as 
Ebola) to a worldwide pandemic (such as H1N1), several general conclusions can be drawn from their 
impacts on mobility. First, all epidemics in recent decades led to drastic ridership reductions on public 
transit during the outbreak, possibly due to fear-driven passengers’ travel avoidance behaviors, 
reduced commercial activities, executive orders, and diminished commuting needs. However, these 
effects were only short term; ridership could rebound quickly after the outbreaks ended. Taipei 
Metro and South Korea Metro, for example, showed immediate ridership recoveries within weeks 
after the outbreak (Wang, 2014; Sung, 2016). Hong Kong Mass Transit Railway and Singapore Mass 
Rapid Transit bounced back to a great extent by the end of 2003, i.e., six to seven months after the 
outbreak (Hong Kong Mass Transit Railway, 2004; SMRT Corporation Ltd., 2004). Sierra Leone, 
however, did not have long-term ridership decline after the Ebola lockdown in 2015 (Peak et al., 
2018). The annual ridership of Hong Kong Mass Transit Railway, Taipei Metro, Toronto Transit 
Commission, and Singapore Mass Rapid Transit from 2001 to 2005, as shown in Figures 8–11, 
indicated that their ridership (particularly rail ridership) usually steadily increased in the following 
years after the epidemics had ended and may have even exceeded pre-epidemic levels. 

Past studies on SARS found that transit was perceived as the riskiest activity and the most likely to be 
avoided as a precautionary measure. This observation was similar across countries, even for those 
that did not experience an outbreak. Moreover, the research team observed the heterogeneity of 
riders’ risk perceptions and mitigation strategies between sociodemographic groups from all past 
epidemics where research was available. Although meaningful observations can be drawn from these 
previous events, the situation with the COVID-19 pandemic is still largely unknown, given its 
unprecedented scale and duration. The observations from previous epidemics should be examined 
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cautiously. It is necessary to keep track of the COVID-19 pandemic’s evolution and related ridership 
fluctuations as new information becomes available. 

The research team identified three studies as relevant for quantifying transit ridership changes during 
this current pandemic in the United States and specifically in Chicago. Two of these studies stated 
that the COVID-19 pandemic has depressed Chicago Transit Authority bus and rail ridership. These 
ridership losses exhibited significant spatial heterogeneity; areas with higher population income 
witnessed more severe ridership drops. The other study showed that the COVID-19 pandemic 
discouraged shared bike usage in Chicago. These findings support other studies conducted 
nationwide that had shown socioeconomic factors significantly affecting the magnitude of travel 
reductions across all modes in the United States.  

The Transportation Research Board’s Guidebook (2014) is intended to help transit agencies prepare 
for pandemics as well as to timely and properly adjust their operations during pandemics. The agency 
responses collected in this report have further enriched the measures this Guidebook recommends. 
Safety precautions, such as distributing personal protective equipment, providing hand 
sanitizer/dispensers, requiring social distancing, and intensifying cleaning and ventilation systems, all 
play a critical role in reducing public transit’s health risks. Transit operators should also clearly 
communicate the safety measures that they have implemented on their transit systems to the public 
through proper platforms, such as social media and mobile applications, to reassure passengers 
about the safety of using transit. Regarding adjustment to transit operations, the first step is to 
identify essential services and nonessential services, where the former should be guaranteed and the 
latter can be reduced. For low-demand areas, it is inevitable to downgrade service, but transit 
agencies can seek supplementary service to avoid accessibility and mobility concerns in those areas, 
e.g., by exploring the benefits of using demand-responsive service and cooperation with 
transportation network companies, e.g., Uber and Lyft. These strategies have been widely practiced 
during the COVID-19 pandemic (Schwartz, 2020). 

As widespread vaccine use has been ameliorating the COVID-19 pandemic, ridership recovery has 
become a critical and pressing issue for public transit agencies. Theoretical studies and real-world 
practices stress the importance of communication, advertising, and publicity when recovering from 
previous pandemics. Studies revealed that people tend to be more responsive to epidemic-related 
reports than to objective risk measures (Fenichel et al., 2013) and that people’s risk perceptions were 
the strongest predictor of travel avoidance behavior (Cahyanto et al., 2016). To avoid people’s false 
perceptions of transit-related risks during epidemics, the Hong Kong Mass Transit Railway and the 
Toronto Transit Commission relied heavily on advertising and publicity campaigns to reinstate public 
confidence in public transit. These campaigns successfully and promptly helped them regain ridership 
(Hong Kong Mass Transit Railway, 2004; Johnson Tew et al., 2008). Amid the COVID-19 pandemic, 
many agencies have been taking advantage of information technologies to timely deliver information, 
e.g., safety protocols and crowding information, to the public.  

Discounts and promotions have also effectively attracted riders, such as discount and/or loyalty 
programs that the Hong Kong Mass Transit Railway and Singapore Mass Rapid Transit system (Hong 
Kong Mass Transit Railway, 2004; SMRT Corporation Ltd., 2004) have used. Moreover, the Toronto 
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Transit Commission collaborated with the city’s tourism industry to stimulate the tourism market and 
attract more riders to transit service (Johnson Tew et al., 2008). This successful experience agrees 
with suggestions from the Guidebook about the importance for transit agencies to cooperate with 
other institutions during epidemics. 

The review of previous epidemics and existing literature provided constructive insights on how to 
enrich this project’s data analysis. The research team developed a series of statistical and dynamic 
models for ridership loss to quantify heterogeneous ridership declines among all Chicago Transit 
Authority rail stations. This analysis integrated time-series prediction through a Bayesian structural 
time-series model, a ridership loss model based on the public’s reaction to daily reported deaths and 
news coverage, a prediction module to forecast future ridership, and a statistical regression to 
quantify the heterogeneous ridership declines. 

The research team fitted a set of parameters to each Chicago Transit Authority rail station and 
consequently applied them to generate rail ridership forecasts for the following months up to 31 July 
2021. A four-fold cross-validation was used to avoid overfitting of the model. The forecast curves 
generated had a flat to slowly upward trend, signifying a slow recovery of the pre-COVID-19 numbers 
as the fear from the reported deaths and trends dissipates. It is important to note that given limited 
data availability in the future, this model provides a conservative estimate of future ridership because 
other relevant factors in the recovery period were not considered such as vaccination rates and 
incoming air travel demand into Chicago (i.e., tourists demand returning). 

The results from the ordinary least squares regression showed that socioeconomic and land-use 
characteristics were good predictors of people’s reactions to the first remote learning/working 
executive order, predicting variation in the 𝑳𝑳𝒄𝒄 with an 𝑹𝑹𝟐𝟐 of 0.743. This result is reasonable because 
reaction to the first executive order may depend more on job and lifestyle flexibility (rather than a 
personal choice). In contrast, the socioeconomic and land-use characteristics were not clear 
predictors of people’s reaction to the daily reported deaths and news coverage (i.e., Google Trends). 
The highest 𝑹𝑹𝟐𝟐 out of all parameters describing the “residual fear” was 0.281. This outstanding result 
may indicate that the primary drivers of the ridership drop (and possibly recovery) are policy and 
executive orders. However, it is important to note that this conclusion does not consider the “new 
normal,” and that it is possible that some riders who used to ride on a daily basis will not return given 
their changed work situation. Yet, just as other studies in the past have shown that fear-based 
ridership decline recovers within months, the evidence from the numerical analysis indicates that 
once all schools fully reopen and all restrictions have been lifted, the Chicago Transit Authority’s rail 
ridership may follow the same recovery trend (similar to those observed after all other epidemics in 
the last three decades).  
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APPENDIX 
The fitter ordinary least squares (OLS) model parameters for all stations are presented in Table 4. 
Then, Tables 5–12 present the detailed results from the OLS regression. 

Table 4. Fitted Parameters per Station 

ID 𝐿𝐿𝑑𝑑 τ𝑑𝑑  𝑟𝑟𝑑𝑑 𝐿𝐿𝑡𝑡 𝜏𝜏𝑡𝑡  𝑟𝑟𝑡𝑡 𝐿𝐿𝑐𝑐  𝐿𝐿𝑠𝑠  
10 0.00128 0.79894 -0.0086 0.004 0.86283 -0.09999 0.70672 0.01657 
20 0.00205 0.97991 -0.00954 0.00597 0.91176 -0.09943 0.63048 0.01094 
30 0.00983 0.86851 -0.05292 0 1 -0.07372 0.47725 0.06525 
40 0.006146956 0.340487 -0.45535 0.014092 1 -0.15565 0.901604 0.035326 
50 0.000107305 0.050604 -0.00171 0.002939 1 -0.02537 0.707619 2.86E-08 
60 0.00131 0 -0.04157 0.00113 0.05217 -0.09996 0.70818 0.01616 
70 0.00672176 0.0972 -0.31738 0.01515 0.391613 -0.17993 0.852672 0.039303 
80 0.00117 0.9977 -0.00732 0.00233 0.99611 -0.03126 0.77162 0.02186 
90 0.00078 0.43147 -0.00565 0.0098 0.85569 -0.09999 0.81739 0.00638 

100 0.00136 0.9401 -0.00498 0.00259 0.98952 -0.05687 0.66631 0.0356 
120 0.00145 0.60452 -0.00719 0.00465 0.75862 -0.08741 0.71712 0.01378 
130 0.000517742 0.190057 -0.44083 0 0.062492 -0.77833 0.615354 0.070891 
140 6.05E-05 0.0312 0 0.002184 0.931127 -0.00983 0.636164 0 
150 0.00201 0.84169 -0.0047 0.00093 0.66403 -0.02926 0.50503 0 
160 0.007559062 0.629951 -0.36033 0.013826 0.498565 -0.16547 0.866838 0.038907 
170 0.00119 0.38378 -0.00734 0.0051 0.67453 -0.09876 0.66589 0.00346 
180 0.000113514 0.082553 -0.00198 0.002865 0.951018 -0.06094 0.824636 1.36E-12 
190 0.00299 0.75656 -0.01162 0.00618 0.72023 -0.09141 0.5924 0.03863 
210 0.00188 0.99211 -0.00749 0.00442 0.99999 -0.05802 0.67796 0.02629 
220 0.00079 0.53366 -0.00247 0.00164 0.47508 -0.09998 0.68254 0.00289 
230 0.001698903 0.209485 -0.61696 0.00077 0.574915 -0.00796 0.771938 0.034809 
240 2.99E-04 8.80E-02 -3.80E-03 1.83E-04 1 -1.00E-01 5.02E-01 0 
250 1.83E-04 5.15E-02 -2.53E-03 3.89E-04 9.79E-01 -1.58E-02 5.12E-01 9.02E-04 
260 0.00119 0.68965 -0.00555 0.00546 0.57591 -0.0991 0.78486 0.01401 
270 0.00091887 0.525606 -0.00467 0.011064 0.984838 -0.09588 0.728678 0.018106 
280 3.18E-04 9.55E-02 -3.39E-03 4.28E-04 6.66E-01 -2.52E-02 5.05E-01 7.88E-17 
290 0.00309 0.4631 -0.02615 0 0.97009 -0.09164 0.5616 0.003 
300 2.13E-04 9.89E-02 -1.49E-03 2.20E-03 9.63E-01 -5.28E-02 6.18E-01 6.48E-03 
310 0.00172 0.99745 -0.00569 0.00135 0.95323 -0.0198 0.65201 0.00472 
320 0 0.995712 -0.92854 0.001917 1 -0.0081 0.778145 0.040888 
330 0.00087 0.69063 -0.00189 0.00135 0.82151 -0.00698 0.75724 0 
340 0.00685 0.66642 -0.06427 0.00489 0.84151 -0.09981 0.72185 0.04992 
350 4.38E-05 0.00651 -0.00335 0.00775 0.999583 -0.08334 0.827317 0.05026 
360 6.74E-05 0.001748 -0.00338 0.004161 1 -0.01764 0.664108 0.04571 
370 0.00112 0.95707 -0.00542 0.00453 0.75228 -0.06917 0.83209 0.00721 
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ID 𝐿𝐿𝑑𝑑 τ𝑑𝑑  𝑟𝑟𝑑𝑑 𝐿𝐿𝑡𝑡 𝜏𝜏𝑡𝑡  𝑟𝑟𝑡𝑡 𝐿𝐿𝑐𝑐  𝐿𝐿𝑠𝑠  
380 0.00069 0.53227 -0.00702 0.00754 0.89469 -0.09989 0.85182 0.01764 
390 0.000384613 0.02044 -0.02503 3.20E-07 0.943345 -0.94673 0.638031 0.016382 
400 0.000166502 0.046806 -0.00531 0.00507 0.868864 -0.05544 0.786619 0.006767 
420 0.00922 0.67849 -0.03732 0.00316 0.93157 -0.07232 0.50211 0.09024 
430 0.009251237 0.289335 -0.98716 0.010291 0.318563 -0.32413 0.865475 0.030299 
440 0.00313 0.99457 -0.00847 0.00299 0.80982 -0.09938 0.49335 0.04935 
450 0.006603296 0.536029 -0.94206 0 0.883799 -0.41128 0.539574 0.06418 
460 6.88E-05 4.11E-06 -0.00394 0.00376 0.99919 -0.01846 0.703656 0.03917 
470 0.00197374 0.656042 -0.39708 0.008111 0.348069 -0.14754 0.845523 0.03958 
480 1.86E-04 6.02E-02 -2.67E-03 0 8.71E-01 -9.56E-02 5.12E-01 8.37E-13 
490 0.00093 0.98564 -0.00173 0.00245 0.99799 -0.01779 0.75 0.01044 
510 0.00889487 0.857261 -0.84191 0 0.654883 -0.83103 0.648771 0.087345 
520 0.000255375 0.125598 -0.00418 0.01125 0.950714 -0.10378 0.794256 0.003281 
530 1.60E-04 6.01E-02 -4.43E-03 5.96E-03 1.00E+00 -5.99E-02 7.95E-01 1.04E-02 
540 0.00175 0.99995 -0.00988 0.00565 1 -0.09801 0.68124 0.02963 
550 0.00146555 0.496544 -0.01045 0.007254 0.882725 -0.29459 0.710437 0.019951 
560 0.00084 0.4617 -0.01837 0.00661 0.78251 -0.09858 0.87382 0.00752 
570 9.76E-05 4.05E-02 -3.68E-03 3.57E-03 6.25E-01 -5.82E-02 8.11E-01 1.93E-02 
580 0.001041238 0.000152 -0.03786 5.73E-16 0.357811 -0.74103 0.586641 0.041272 
590 0.00013 0.04408 -0.00214 0.00242 0.00039 -0.09954 0.77489 0.01703 
600 0.01 0.123067 -0.58316 0 0.589073 -0.80902 0.580597 0.059479 
610 0.00108504 0.303564 -0.48482 0.013884 0.431421 -0.16559 0.814959 0.051275 
630 0.00040894 0.000616 -0.02885 0.007883 1 -0.08967 0.737154 0.031962 
650 0.00176 0.73626 -0.00825 0.00984 1 -0.0996 0.75338 0 
660 0.00007 0.04351 -0.00493 0.00132 0.58631 -0.00934 0.79777 0.01396 
670 0.0011 0.98728 -0.00526 0.0074 0.99294 -0.0875 0.82335 0.01352 
680 0.00088 0.39534 -0.00923 0.00249 0.58195 -0.08265 0.79676 0.01158 
690 0.0001941 0.064516 -0.00413 0.004786 0.853054 -0.06379 0.69173 0.001812 
700 0.005662695 0.05832 -0.65593 0 0.669243 -0.5573 0.566607 0.062242 
710 2.40E-04 8.83E-02 -8.11E-03 9.86E-03 1 -9.40E-02 7.81E-01 3.65E-02 
720 0.003100758 0.521736 -0.90561 0.007032 0.98123 -0.20163 0.614845 0.069653 
740 0.00171 0.75981 -0.00741 0.00128 0.66492 -0.02292 0.55498 0.03314 
750 0.00157 0.58051 -0.01004 0.00251 0.24267 -0.0989 0.7136 0.0085 
760 0.0006 0.17351 -0.01323 0.00667 0.8833 -0.09999 0.74585 0.00644 
770 0.000105333 0.024559 -0.00242 0.000943 0.277997 -0.017 0.656958 1.45E-10 
780 0.000163074 0.062516 -0.0011 0.00033 0.020207 -0.03582 0.564032 8.66E-15 
790 0.004509291 0.198477 -0.78529 0.010872 1 -0.12226 0.888275 0.036165 
800 0.00045 0.95116 -0.00033 0.00153 0.75663 -0.00384 0.73633 0.01817 
810 0.00088 0.58018 -0.00738 0.00027 0.2045 -0.00979 0.69238 0.01092 
820 7.87E-05 0.035429 0 0.000573 2.65E-18 -0.0481 0.628705 1.23E-18 
830 0.00241 0.98928 -0.00776 0.0075 0.8534 -0.09256 0.66278 0.02412 
840 0.007824734 0.702753 -0.70751 0.014026 0.177489 -0.31741 0.737333 0.058959 
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ID 𝐿𝐿𝑑𝑑 τ𝑑𝑑  𝑟𝑟𝑑𝑑 𝐿𝐿𝑡𝑡 𝜏𝜏𝑡𝑡  𝑟𝑟𝑡𝑡 𝐿𝐿𝑐𝑐  𝐿𝐿𝑠𝑠  
850 0.00053 0.62077 -0.00162 0.01035 0.99461 -0.09943 0.80199 0.02386 
870 0.000565661 0.294146 -0.00497 0.010803 0.971305 -0.0992 0.799953 0.013411 
880 0.00105 0.33787 -0.01136 0.0042 0.9767 -0.08715 0.72651 0.00352 
890 0.00115 0.50721 -0.00601 0.00003 0.79376 -0.01772 0.6597 0.02609 
900 0.00196 1 -0.00946 0.00323 1 -0.09997 0.60135 0 
910 0.003620863 0.966924 -0.46606 0 0.721551 -0.45682 0.579578 0.043292 
920 0.00201 0.59814 -0.01117 0 0.64248 -0.02008 0.43502 0.02672 
930 0.001580181 0.425833 -0.01388 0.001534 0.502334 -0.04567 0.709217 0.019713 
940 0.00164 0.50318 -0.01289 0.00108 0.90606 -0.08595 0.57761 0.00582 
960 0.00161 0.00221 -0.04859 0.0029 0.49495 -0.08273 0.70297 0.04844 
970 0.00091 0.37097 -0.00296 0 0.92042 -0.0929 0.47413 0 
980 0.000543824 0.025735 -0.02521 0.022248 1 -1 0.5791 0.01659 
990 0.00082 0.26387 -0.00572 0.00032 1 -0.09993 0.49601 0 

1000 0.00139 0.64984 -0.00442 0.0131 0.85884 -0.09434 0.71647 0.01429 
1010 0.005472843 0.183301 -0.42473 0 0.597457 -0.83776 0.848704 0.046646 
1020 0.00074 0.33917 -0.00467 0.00657 0.83814 -0.0997 0.79623 0.0005 
1030 0.00095 0.28182 -0.01298 0.00315 0.59525 -0.03936 0.65065 0.07317 
1040 0.0024 0.9971 -0.00446 0.00181 0.99646 -0.01719 0.48444 0.00557 
1050 0.000776874 0.925196 -0.73085 0.015367 1 -0.1232 0.746583 0.056159 
1060 0.00277 0.94383 -0.00864 0.00653 0.80458 -0.09886 0.58637 0.0086 
1070 0.006155272 0.945248 -0.66887 0 0.260539 -0.26429 0.64887 0.043436 
1080 0.005175296 0.565015 -0.86034 0 0.287392 -0.49533 0.605954 0.073187 
1090 0.002874099 0.956776 -0.9005 0.018041 0.452555 -0.1863 0.873079 0.038052 
1120 0.00734697 0.039253 -0.89186 0.00294 0.443191 -0.49739 0.737293 0.071801 
1130 0.00131 0.75875 -0.00649 0.00345 0.69963 -0.07096 0.76176 0.00312 
1140 0.000330313 0.098486 -0.00281 0.004117 0.905983 -0.08904 0.483236 0.019172 
1150 0.00183 0.95672 -0.00667 0.00116 0.95626 -0.01615 0.63039 0.02346 
1160 0.001607036 0.612998 -0.0174 0.027073 0.180766 -0.29587 0.838054 0.008618 
1170 0.001046108 0.522711 -0.00549 0.001029 0.44403 -0.09983 0.587464 0.020619 
1180 0.00175 0.91921 -0.00583 0.00388 0.935 -0.04776 0.66544 0.02436 
1190 0.000139469 0.047065 -0.00248 0.002001 0.956503 -0.02517 0.631726 0.003806 
1200 0.00108 0.46507 -0.0051 0.0065 0.74724 -0.09997 0.69544 0 
1210 0.007730468 0.368779 -0.40436 0.005773 0.455134 -0.09851 0.821753 0.054164 
1220 0.00158 0.89421 -0.01711 0.00648 1 -0.09121 0.85424 0.01989 
1230 0.000169941 0.068692 -0.00075 0.000923 0.32733 -0.0208 0.51042 3.96E-06 
1240 0.007924838 0.382941 -0.99294 0 0.824255 -0.95655 0.785832 0.047594 
1250 0.006066421 0.876109 -0.05856 0.052019 0.703948 -0.20046 0.712214 0.02908 
1260 0.00276 1 -0.02278 0.00079 0.57959 -0.09999 0.63069 0.06253 
1270 0 0.5185 -0.09997 0.00062 0.80117 -0.02446 0.63468 0.06167 
1280 0.00053 0.08896 -0.01484 0.00465 0.7394 -0.09985 0.65904 0.02187 
1290 0.00737 0.74687 -0.0392 0.00611 0.99982 -0.09791 0.69991 0.06605 
1300 3.50E-05 0.38184 -0.32794 0.053278 0.480724 -0.25765 0.749534 0.082759 
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ID 𝐿𝐿𝑑𝑑 τ𝑑𝑑  𝑟𝑟𝑑𝑑 𝐿𝐿𝑡𝑡 𝜏𝜏𝑡𝑡  𝑟𝑟𝑡𝑡 𝐿𝐿𝑐𝑐  𝐿𝐿𝑠𝑠  
1310 0.00053 0.99831 0 0.00189 1 -0.00591 0.76252 0 
1320 0.000157613 0.054669 -0.00381 0.003256 1 -0.02797 0.745285 0.000166 
1330 0.002595669 0.544626 -0.28764 0.013419 0.938522 -0.23361 0.830256 0.039421 
1340 0.009623261 0.122442 -0.34406 0 0.638697 -0.72387 0.835283 0.056774 
1350 0.0008 0 -0.04204 0.00381 0.53293 -0.07085 0.79912 0.01795 
1360 0.00175 0.5547 -0.00796 0.00304 0.9473 -0.0732 0.5615 0.01577 
1380 0.006788296 0.760068 -0.36251 0.001231 0.493966 -0.00533 0.679927 0.000674 
1400 0.00166 0.80208 -0.009 0.00604 0.85814 -0.09999 0.70282 0.00522 
1410 0.009890646 0.35548 -0.23916 0.011418 0.858616 -0.1145 0.822087 0.059489 
1420 0.000831587 0.276726 -0.0069 0.001164 0.822304 -0.01865 0.738855 0.004776 
1430 0.0027 0.94348 -0.07665 0.00021 0.71184 -0.03603 0.5852 0.05077 
1440 0.005451498 0.509417 -0.15559 0 0.916973 -0.7046 0.860895 0.043557 
1450 0.000475139 2.93E-18 -0.02905 0.02055 0.905889 -0.14001 0.760985 0.023519 
1460 0.000557024 0.345084 -0.00793 0.01186 0.867931 -0.12061 0.831913 0.027932 
1480 0.001629417 0.994098 -0.00511 0.005071 0.994295 -0.06761 0.732077 0.012502 
1490 0.009427282 0.91183 -1 0.001827 0.955446 -0.006 0.786115 0.037114 
1500 0.000557858 0.101136 -0.31427 0.013326 0.78987 -0.13002 0.812731 0.061569 
1510 0.00147 0.4437 -0.02401 0.00459 0.69911 -0.06724 0.81484 0.03978 
1660 0.000232517 0.011617 -0.02267 0.014948 1 -0.12877 0.814363 0.026393 
1670 0.00518 0.97043 -0.02405 0.00335 0.46808 -0.09956 0.49203 0 
1680 0.00713 0.87049 -0.0585 0.00394 0.6739 -0.09814 0.76591 0.02578 
1690 0.000185465 0.145871 -0.00029 0.099998 1.17E-09 -0.32405 0.814934 0.007841 
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Table 5. OLS Regression Results for 𝑳𝑳𝒄𝒄 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) -0.071 0.515 -0.138 0.891 
prop_poverty -0.429 0.150 -2.860 0.005 
prop_age_0_24 0.612 0.375 1.633 0.105 
prop_age_25_39 0.535 0.208 2.566 0.012 
prop_age_40_64 0.410 0.395 1.039 0.301 
prop_edu -0.141 0.879 -0.160 0.873 
prop_employ 0.327 0.389 0.841 0.402 
prop_R_Manuf 0.110 2.128 0.052 0.959 
prop_R_Trade -2.543 1.495 -1.701 0.092 
prop_R_Edu -0.268 0.975 -0.275 0.784 
prop_R_Health 1.623 1.342 1.209 0.229 
prop_W_Manuf -0.038 0.131 -0.287 0.775 
prop_W_Trade 0.013 0.017 0.754 0.452 
prop_W_Edu 0.021 0.076 0.282 0.778 
prop_W_Health -0.001 0.005 -0.157 0.875 
prop_white 0.185 0.099 1.863 0.065 
prop_black 0.048 0.080 0.606 0.545 
prop_indian.native 1.507 2.353 0.640 0.523 
prop_asian 0.322 0.110 2.922 0.004 
prop_residential -0.036 0.124 -0.288 0.774 
prop_commerical -0.131 0.139 -0.942 0.348 
prop_institute -0.081 0.131 -0.617 0.538 
prop_industrial -0.370 0.160 -2.310 0.023 
prop_transportation -0.070 0.162 -0.430 0.668 
prop_openspace -0.149 0.110 -1.352 0.179 
LUM 0.088 0.098 0.906 0.367 
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Table 6. OLS Regression Results for 𝑳𝑳𝑳𝑳 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) -0.005 0.022 -0.212 0.832 
prop_poverty -0.001 0.006 -0.143 0.887 
prop_age_0_24 0.009 0.016 0.556 0.579 
prop_age_25_39 0.004 0.009 0.464 0.644 
prop_age_40_64 -0.002 0.017 -0.104 0.918 
prop_edu -0.045 0.037 -1.217 0.226 
prop_employ 0.011 0.016 0.693 0.490 
prop_R_Manuf -0.040 0.090 -0.442 0.659 
prop_R_Trade -0.107 0.063 -1.685 0.095 
prop_R_Edu 0.070 0.041 1.697 0.092 
prop_R_Health 0.003 0.057 0.046 0.964 
prop_W_Manuf -0.007 0.006 -1.201 0.232 
prop_W_Trade 0.001 0.001 1.811 0.073 
prop_W_Edu -0.004 0.003 -1.405 0.163 
prop_W_Health 0.000 0.000 0.250 0.803 
prop_white -0.005 0.004 -1.149 0.253 
prop_black -0.005 0.003 -1.613 0.110 
prop_indian.native -0.223 0.100 -2.233 0.027 
prop_asian 0.000 0.005 -0.025 0.980 
prop_residential 0.001 0.005 0.169 0.866 
prop_commerical 0.002 0.006 0.303 0.763 
prop_institute 0.005 0.006 0.852 0.396 
prop_industrial 0.004 0.007 0.639 0.524 
prop_transportation 0.007 0.007 0.954 0.342 
prop_openspace 0.006 0.005 1.331 0.186 
LUM 0.001 0.004 0.169 0.866 
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Table 7. OLS Regression Results for 𝛕𝛕𝑳𝑳 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) -1.445 2.818 -0.513 0.609 
prop_poverty 0.741 0.821 0.903 0.368 
prop_age_0_24 2.593 2.049 1.265 0.208 
prop_age_25_39 1.813 1.139 1.592 0.114 
prop_age_40_64 2.039 2.158 0.945 0.347 
prop_edu -6.106 4.806 -1.271 0.206 
prop_employ 0.107 2.126 0.050 0.960 
prop_R_Manuf 5.150 11.634 0.443 0.659 
prop_R_Trade -12.623 8.172 -1.545 0.125 
prop_R_Edu 5.254 5.332 0.985 0.327 
prop_R_Health 3.086 7.340 0.420 0.675 
prop_W_Manuf 0.758 0.718 1.056 0.293 
prop_W_Trade 0.116 0.092 1.266 0.208 
prop_W_Edu -0.356 0.413 -0.862 0.391 
prop_W_Health 0.024 0.029 0.821 0.414 
prop_white 0.149 0.544 0.274 0.784 
prop_black -0.385 0.437 -0.882 0.379 
prop_indian.native -8.292 12.868 -0.644 0.521 
prop_asian 0.571 0.602 0.948 0.345 
prop_residential -0.673 0.679 -0.992 0.323 
prop_commerical -0.703 0.758 -0.927 0.356 
prop_institute -0.517 0.719 -0.719 0.474 
prop_industrial -0.760 0.876 -0.867 0.388 
prop_transportation -0.338 0.888 -0.380 0.704 
prop_openspace 0.514 0.603 0.853 0.396 
LUM 0.613 0.534 1.149 0.253 
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Table 8. OLS Regression Results for 𝒓𝒓𝑳𝑳 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 1.810 2.198 0.823 0.412 
prop_poverty 0.354 0.640 0.554 0.581 
prop_age_0_24 -1.110 1.598 -0.695 0.489 
prop_age_25_39 -0.908 0.888 -1.022 0.309 
prop_age_40_64 -0.020 1.683 -0.012 0.991 
prop_edu 3.435 3.748 0.916 0.361 
prop_employ -0.981 1.658 -0.592 0.555 
prop_R_Manuf -2.713 9.073 -0.299 0.765 
prop_R_Trade 10.405 6.374 1.632 0.105 
prop_R_Edu -6.620 4.159 -1.592 0.114 
prop_R_Health 0.402 5.725 0.070 0.944 
prop_W_Manuf 0.613 0.560 1.095 0.276 
prop_W_Trade -0.195 0.072 -2.719 0.008 
prop_W_Edu 0.441 0.322 1.368 0.174 
prop_W_Health -0.005 0.023 -0.203 0.840 
prop_white -0.108 0.424 -0.255 0.799 
prop_black -0.411 0.340 -1.208 0.230 
prop_indian.native 8.524 10.036 0.849 0.397 
prop_asian -0.543 0.470 -1.155 0.250 
prop_residential -1.138 0.529 -2.149 0.034 
prop_commerical -0.922 0.591 -1.559 0.122 
prop_institute -0.932 0.561 -1.663 0.099 
prop_industrial -0.855 0.683 -1.251 0.213 
prop_transportation -1.332 0.693 -1.923 0.057 
prop_openspace -1.161 0.470 -2.467 0.015 
LUM 0.142 0.416 0.342 0.733 
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Table 9. OLS Regression Results for 𝑳𝑳𝒕𝒕 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 0.0276 0.0846 0.3269 0.7444 
prop_poverty 0.0212 0.0246 0.8593 0.3920 
prop_age_0_24 -0.0294 0.0615 -0.4782 0.6334 
prop_age_25_39 -0.0109 0.0342 -0.3187 0.7506 
prop_age_40_64 0.0242 0.0648 0.3732 0.7097 
prop_edu 0.0189 0.1442 0.1314 0.8957 
prop_employ -0.0524 0.0638 -0.8215 0.4130 
prop_R_Manuf -0.1308 0.3491 -0.3746 0.7086 
prop_R_Trade -0.3310 0.2452 -1.3498 0.1797 
prop_R_Edu 0.3789 0.1600 2.3679 0.0196 
prop_R_Health 0.0451 0.2203 0.2046 0.8382 
prop_W_Manuf -0.0038 0.0215 -0.1786 0.8586 
prop_W_Trade 0.0003 0.0028 0.1195 0.9051 
prop_W_Edu -0.0111 0.0124 -0.8951 0.3726 
prop_W_Health 0.0008 0.0009 0.9296 0.3545 
prop_white 0.0082 0.0163 0.5044 0.6149 
prop_black -0.0065 0.0131 -0.4973 0.6199 
prop_indian.native -0.4632 0.3861 -1.1996 0.2328 
prop_asian 0.0136 0.0181 0.7551 0.4517 
prop_residential 0.0130 0.0204 0.6358 0.5262 
prop_commerical 0.0596 0.0228 2.6194 0.0100 
prop_institute 0.0232 0.0216 1.0777 0.2834 
prop_industrial 0.0021 0.0263 0.0796 0.9367 
prop_transportation 0.0335 0.0267 1.2560 0.2116 
prop_openspace 0.0088 0.0181 0.4866 0.6275 
LUM 0.0095 0.0160 0.5912 0.5555 
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Table 10. OLS Regression Results for 𝛕𝛕𝒕𝒕 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 3.083 2.248 1.372 0.173 
prop_poverty 0.232 0.654 0.355 0.723 
prop_age_0_24 -0.970 1.635 -0.593 0.554 
prop_age_25_39 -0.154 0.909 -0.170 0.866 
prop_age_40_64 -0.024 1.721 -0.014 0.989 
prop_edu 2.481 3.833 0.647 0.519 
prop_employ -1.663 1.696 -0.981 0.329 
prop_R_Manuf -16.648 9.279 -1.794 0.075 
prop_R_Trade 20.749 6.518 3.183 0.002 
prop_R_Edu 3.532 4.253 0.830 0.408 
prop_R_Health -11.161 5.855 -1.906 0.059 
prop_W_Manuf 0.052 0.573 0.091 0.928 
prop_W_Trade -0.116 0.073 -1.589 0.115 
prop_W_Edu 0.455 0.330 1.380 0.170 
prop_W_Health 0.010 0.023 0.422 0.674 
prop_white -0.374 0.434 -0.861 0.391 
prop_black -0.277 0.348 -0.797 0.427 
prop_indian.native -11.660 10.263 -1.136 0.258 
prop_asian -0.195 0.480 -0.405 0.686 
prop_residential -0.051 0.541 -0.094 0.925 
prop_commerical 0.090 0.605 0.148 0.882 
prop_institute -0.054 0.573 -0.094 0.926 
prop_industrial 0.463 0.699 0.662 0.509 
prop_transportation 0.025 0.708 0.036 0.971 
prop_openspace 0.057 0.481 0.118 0.906 
LUM -0.856 0.426 -2.012 0.047 
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Table 11. OLS Regression Results for 𝒓𝒓𝒕𝒕 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 0.9527 1.7869 0.5331 0.5950 
prop_poverty 0.8635 0.5202 1.6599 0.0997 
prop_age_0_24 -1.2670 1.2994 -0.9750 0.3316 
prop_age_25_39 -0.9783 0.7223 -1.3545 0.1782 
prop_age_40_64 -2.0133 1.3684 -1.4712 0.1440 
prop_edu 0.2824 3.0470 0.0927 0.9263 
prop_employ -0.3002 1.3479 -0.2227 0.8242 
prop_R_Manuf 0.2390 7.3762 0.0324 0.9742 
prop_R_Trade 9.7921 5.1815 1.8898 0.0613 
prop_R_Edu -1.7430 3.3810 -0.5155 0.6072 
prop_R_Health -4.3945 4.6540 -0.9442 0.3470 
prop_W_Manuf 0.2947 0.4552 0.6475 0.5186 
prop_W_Trade -0.0781 0.0582 -1.3411 0.1825 
prop_W_Edu 0.2720 0.2621 1.0379 0.3015 
prop_W_Health 0.0051 0.0183 0.2799 0.7800 
prop_white 0.2330 0.3450 0.6754 0.5008 
prop_black 0.0992 0.2768 0.3584 0.7207 
prop_indian.native 5.3460 8.1586 0.6553 0.5136 
prop_asian 0.1284 0.3818 0.3363 0.7373 
prop_residential 0.2324 0.4304 0.5399 0.5903 
prop_commerical 0.4635 0.4807 0.9641 0.3370 
prop_institute 0.1385 0.4557 0.3038 0.7618 
prop_industrial 0.6188 0.5556 1.1138 0.2677 
prop_transportation 0.0821 0.5631 0.1458 0.8843 
prop_openspace 0.2109 0.3823 0.5517 0.5823 
LUM -0.3886 0.3383 -1.1488 0.2530 
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Table 12. OLS Regression Results for 𝑳𝑳𝑳𝑳  

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 0.43 0.188 2.31 0.02 
prop_poverty -0.12 0.055 -2.20 0.03 
prop_age_0_24 -0.20 0.137 -1.45 0.15 
prop_age_25_39 -0.01 0.076 -0.08 0.93 
prop_age_40_64 -0.14 0.144 -0.97 0.34 
prop_edu 0.37 0.321 1.15 0.25 
prop_employ -0.27 0.142 -1.92 0.06 
prop_R_Manuf 0.16 0.778 0.20 0.84 
prop_R_Trade -0.46 0.546 -0.85 0.40 
prop_R_Edu 0.34 0.356 0.94 0.35 
prop_R_Health 0.08 0.491 0.17 0.86 
prop_W_Manuf -0.04 0.048 -0.89 0.38 
prop_W_Trade 0.01 0.006 1.38 0.17 
prop_W_Edu -0.05 0.028 -1.88 0.06 
prop_W_Health 0.00 0.002 0.53 0.60 
prop_white -0.10 0.036 -2.70 0.01 
prop_black -0.04 0.029 -1.43 0.15 
prop_indian.native -0.09 0.860 -0.11 0.91 
prop_asian -0.04 0.040 -0.94 0.35 
prop_residential 0.02 0.045 0.39 0.70 
prop_commerical 0.02 0.051 0.30 0.77 
prop_institute 0.09 0.048 1.78 0.08 
prop_industrial 0.01 0.059 0.22 0.83 
prop_transportation 0.04 0.059 0.66 0.51 
prop_openspace 0.05 0.040 1.34 0.18 
LUM -0.04 0.036 -1.08 0.28 
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All the fitted curves fitted with the dynamics models for ridership reduction, along with their 
forecasts are presented below. The name of each figure represents its station ID. 
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